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Abstract

The purpose of this article was to establish how theoretical category knowledge—specifical-
ly, knowledge of the causal relations that link the features of categories—supports the ability
to infer the presence of unobserved features. Our experiments were designed to test proposals
that causal knowledge is represented psychologically as Bayesian networks. In five experi-
ments we found that Bayes� nets generally predicted participants� feature inferences quite well.
However, we also observed a pervasive violation of one of the defining principles of Bayes�
nets—the causal Markov condition—because the presence of characteristic features invariably
led participants to infer yet another characteristic feature. We argue that this effect arises from
a domain-general bias to assume the presence of underlying mechanisms associated with the
category. Specifically, people take an exemplar to be a ‘‘well functioning’’ category member
when it has most or all of the category�s characteristic features, and thus are likely to infer
a characteristic value on an unobserved dimension.
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1. Introduction

Research of the past 15 years has shown the importance of causal knowledge—
specifically, knowledge of causal relations between category-associated features—
in the acquisition and use of natural concepts. Categories tend to form around clus-
ters of causally related features (Ahn & Medin, 1992; Medin, Wattenmaker, &
Hampson, 1987). Supervised category learning will depend on the causal relations
that hold between a category�s features (Waldmann, Holyoak, & Fratianne, 1995),
and with other categories (Lien & Cheng, 2000). Interfeature causal relations also
influence how items are classified (e.g., Ahn, 1998; Ahn, Kim, Lassaline, & Dennis,
2000; Rehder & Hastie, 2001; Rehder, 2003a, 2003b; Sloman, Love, & Ahn, 1998),
and how novel properties are generalized to categories (Hadjichristidis, Sloman, Ste-
venson, & Over, 2004; Medin, Coley, Storms, & Hayes, 2003; Rehder & Hastie,
2004).

In this article, we ask whether and how this kind of causal knowledge is used to
make inferences about unobservable or unobserved features of novel objects. Imagine
coming across an unfamiliar bird and making an inference about whether it is likely to
fly, or finding an unfamiliar plant and judging whether it is safe to eat. In each of these
cases, an inference would presumably draw on (a) the observable features of the ob-
ject and (b) prior, more general knowledge of a category to which the object belongs.
We ask how causal relations between features—when they are available as part of the
reasoner�s prior knowledge of the category—are used in inference.

We begin, in the next section, with two candidate models of feature inference. The
first is based on an object�s typicality relative to a salient category. It does not impli-
cate causal knowledge but serves as a useful standard for comparison. The second is
based on causal relations between features and makes specific predictions about
inference. To foreshadow, in Experiment 1 we find a systematic deviation from these
predictions. Experiments 2–5 test alternative models designed to explain this
deviation.

1.1. Approaches to feature inference

1.1.1. Feature inference by typicality

Imagine coming across an unfamiliar bird and making an inference about whether
it is likely to fly. One way to make this inference is based on how typical it is of the
bird category, which has flight as an associated feature. On this approach, a bird that
is highly typical of the category—for example, a robin—would be judged more likely
to fly than would a less typical bird—for example, an ostrich.

Although typicality seems intuitive, its rationale is not so clear. At first glance it
appears to be related to the probabilistic view of concepts, on which categories form
around clusters of correlated features (Rosch & Mervis, 1975). But whereas Rosch
emphasized the interfeature correlations that obtain between categories (and which
thus define clusters of features), typicality based feature inferences are licensed only
if features are also correlated within category (such that category features are infer-
entially dependent on one another). Whether natural categories actually exhibit such
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within-category correlations is an open question. Another possible rationale for typ-
icality is that an object with many features characteristic of a category is more likely
to, in fact, be a member of that category, and to possess other features characteristic
of that category as a result. We address this possibility in Experiment 1. For now we
wish to establish that typicality is an intuitive basis for inference but one without a
clear rationale.

It has been shown that in some circumstances people do seem to make typicality
based feature inferences. For example, Yamauchi and Markman (2000) taught peo-
ple artificial categories and found that exemplars that possessed more features in
common with training exemplars supported stronger inferences of unobserved fea-
tures. This result obtained despite the absence of within-category feature correlations
in the training data, and is thus suggestive of the possibility that people have a gen-
eral tendency to infer features on the basis of typicality.

A brief caveat is called for here. Thus, far we have used typicality to mean central-
ity in a category: A typical category member is one with features possessed by many
other category members. But typicality may be influenced by factors other than cen-
trality. For example, exemplars are sometimes viewed as more typical to the extent
that they satisfy a goal or ideal that the reasoner associates with the category (Barsa-
lou, 1985; Burnett, Medin, Ross, & Blok, in press; Lynch, Coley, & Medin, 2000). In
addition, when causal or theoretical knowledge is present, exemplars are viewed as
more typical to the extent they exhibit the correlations among features that such
knowledge leads one to expect (e.g., an animal that lives underwater should also have
gills) (Ahn, Marsh, Luhmann, & Lee, 2002; Malt & Smith, 1984). As we shall show,
consideration of some of these additional influences on typicality will bear on its po-
tential as an explanation for people�s patterns of feature inferences.

1.1.2. Feature inference by causal reasoning

A typicality based inference depends on a quality of the whole object (its total
number of characteristic features), and is driven by a general expectation that better
examples of the category are more likely to have any unobserved feature. For a rea-
soner who knows the specific causal relations that hold between features, however,
there is an alternative: feature-to-feature inference, in which the presence or absence
of an unobserved feature is inferred from the presence or absence of specific features
to which it is related (Medin, 1983).

Consider again our unfamiliar bird and an inference about its ability to fly. An
alternative to the typicality approach is to reason about the causes or enablers of
flight in birds: large wings relative to body size, aerodynamic shape, and so on. Other
features, like a characteristically shaped beak, may be regarded as less relevant to the
inference, even though these features make the bird more typical of its category. On
this approach, feature inference is a matter of causal reasoning.

To see in greater detail how this sort of reasoning might be done, it is useful to
represent categories as causal models in which features appear as nodes and causal
relations as directed links between nodes (Rehder, 2003a, 2003b; Waldmann et al.,
1995). The structure in Fig. 1, for example, represents a category in which one fea-
ture, F1, causes three others, F2, F3, and F4.



Fig. 1. Common Cause network.
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Consider a category member in which F2, F3, and F4 are observed (each is ob-
served to be either present or absent) and the state of F1 is unobserved and to be in-
ferred. In this case the states of F2, F3, and F4 are all relevant. To the extent that each
of these effect features is present, it increases our confidence that its cause, F1, is pres-
ent, because from the presence of an effect one can infer the presence of its cause.

Now consider a category member in which F1, F2, and F3 are observed (present or
absent) and the state of F4 is unobserved and to be inferred. In this case, F1 is rel-
evant. Its presence increases our confidence that any of its effects—in this case,
F4—is also present. What of F2 and F3? Because F2 and F3 are not directly causally
related to F4, the only way in which they could provide inferential support to F4 is by
providing evidence about F1. But in this case we already know that F1 is present (or
absent). Since F1 is observed, F2 and F3 become irrelevant to the inference. They are
‘‘screened off’’ from F4 by F1.

This screening-off principle is central to causal reasoning (Hausman & Wood-
ward, 1999). It has traveled under various names—contained, for example, in Rei-
chenbach�s (1956) ‘‘principle of the common cause.’’ In language associated with
Bayesian networks, it is captured in the causal Markov condition, which states that
a variable is independent of its nondescendents conditional on the states of its imme-
diate parents (Pearl, 2000). In the current example, the effects of a common cause are
independent of one another conditional on the observed state of the cause. We will
call this method of feature inference—by causal reasoning that respects the causal
Markov condition—the straightforward causal-reasoning method.

Note that the straightforward causal-reasoning and typicality approaches can
lead to different inferences. One reason for this is that features relevant to typicality
will often, due to the causal Markov condition, be irrelevant in causal reasoning. For
a category with a common-cause structure (Fig. 1), the causal Markov condition
states that information about the presence or absence of F2 and F3 is irrelevant to
inferring F4 given knowledge of F1. In contrast, typicality predicts that inferences
to F4 will be stronger when F2 and F3 are present even when F1 is observed, because
such an object is more typical of its category.

To return to the central question of this paper, how are feature inferences made
when causal knowledge is available? Our first goal will be to show that causal knowl-
edge is used in feature inference by demonstrating, for example, that features are
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more likely to be judged present when their cause(s) or effect(s) are present. Our sec-
ond goal will be to determine more precisely how causal knowledge is used. In par-
ticular, in Experiment 1 we test whether feature inferences honor the screening off
principle.
2. Experiment 1

Participants learned about a novel category and then made inferences about
unobserved features of individual category members. In a common cause condition,
participants learned (a) four features associated with the category and their likeli-
hoods of being present in category members and (b) causal relations between these
features. In particular, these participants learned that the four features were related
in a common-cause structure (Fig. 1), such that one of the features caused, by inde-
pendent mechanisms, the other three. For each causal relation, an underlying mech-
anism was provided. In a control condition, participants learned the features and
their likelihoods of being present in category members, but no causal relations or
mechanisms. The design thus allows us to isolate the effect of causal knowledge
on feature inference.

In the common cause condition, we predicted that causal knowledge will be used
powerfully in inference and that its use will be consistent with the straightforward
causal-reasoning account outlined earlier. First, inferences about F1 should be stron-
ger as a function of the number of effects (F2, F3, and F4) present. Second, consistent
with the screening-off principle (the causal Markov condition), inferences about an
effect feature—say, F4—should be sensitive to whether its cause, F1, is present, but
not to whether the other effects—in this case, F2 and F3—are present when F1 is
observed.

In each graph the vertical axis represents the probability that the to-be-inferred
feature is present (higher values = more probable). The overall number of features
observed present in an object appears on the horizontal axis. Because the one to-
be-inferred feature is unobserved, the number of features observed present varies
from 0 to 3. The top panel shows predictions for items in which the common cause,
F1, is unobserved and to be inferred. On these items, we expect each of the effect fea-
tures, when it is present, to drive inferences upward.1 The bottom panel shows pre-
dictions for items in which one of the effects—F2, F3, or F4—is to be inferred. (The
overall number of features varies from 0 to 2 when the cause, F1, is observed absent,
and from 1 to 3 when it is observed present, due to the absence/presence of F1 itself.)
On these items, we expect inferences to be low when F1 is absent and high when F1 is
present. Importantly, in keeping with the causal Markov condition, we expect infer-
ences to be uniformly low when F1 is absent and uniformly high when F1 is present.
1 Our prediction that inferences to the common cause are an increasing function of the number of
effects rests on the assumption that the causal relationships are viewed as probabilitic rather than
necessary. That is, although the presence of one effect will raise the probability that the common cause is
present, its presence will not be certain.



Fig. 2. Normative predictions for the Common Cause network of Fig. 1. (A) items in which F1 was
inferred. (B) items in which either F2, F3, or F4 was inferred.
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That is, we expect both of the lines in the bottom panel of Fig. 2 to be flat; positive
slopes in these lines would indicate that, in violation of the causal Markov condition,
effect features are providing inferential support for one another even when their com-
mon cause is observed.

In the control condition, of course, F1 should have no special influence on infer-
ences about F2, F3, and F4, since these participants are given no causal knowledge
and therefore no reason to distinguish F1 from the other three features. However,
if inferences reflect typicality based reasoning, then they should strengthen with
the number of features observed present in an item. That is, category members that
are more typical (in virtue of having more category-associated features) will be
deemed more likely to have yet one more category-associated feature.
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This experiment was also designed to detect any influence of an exemplar�s good-
ness of category membership on feature inference. In a categorization phase, partic-
ipants were asked to judge the likelihood of category membership of each of the
exemplars for which they made inferences about unobserved features.

2.1. Method

2.1.1. Materials

Six novel categories were used: two biological kinds (Kehoe Ants, Lake Victoria
Shrimp), two nonliving natural kinds (Myastars [a kind of star], Meteoric Sodium
Carbonate), and two artifacts (Romanian Rogos [a kind of car], Neptune Personal
Computers). Each category had four featural dimensions, and each dimension had
two possible values. For example, for Lake Victoria shrimp the four dimensions were
quantity of ACh neurotransmitter, speed of flight response, rate of sleep cycle, and
body weight. The two values on the first dimension were ‘‘a high quantity of ACh
neurotransmitter’’ and ‘‘a low quantity of ACh neurotransmitter’’; the two values
on the second dimension were ‘‘a fast flight response’’ and ‘‘a slow flight response’’;
the two values on the third dimension were ‘‘an accelerated sleep cycle’’ and ‘‘a decel-
erated sleep cycle’’; and the two values on the fourth dimension were ‘‘high body
weight’’ and ‘‘low body weight.’’

One value on each dimension was characteristic of the category. Henceforth we
call these values ‘‘characteristic features,’’ or just ‘‘features,’’ and the characteristic
features on the four dimensions are designated F1, F2, F3, and F4. For example, a
participant learning about Lake Victoria Shrimp might learn that F1 is ‘‘a high
quantity of ACh neurotransmitter,’’ F2 is ‘‘a slow flight response,’’ F3 is ‘‘an accel-
erated sleep cycle,’’ and F4 is ‘‘low body weight.’’ Each of these features was said to
be present in 75% of category members, and the other value on each dimension was
said to be present in 25% of category members. This information was summarized in
a table that listed the four dimensions, their possible values, and the likelihoods of
these values—for example, ‘‘quantity of ACh neurotransmitter: high (75%) or low
(25%).’’

For participants in the common cause condition, each category was given the
three causal relationships shown in Fig. 1: F1 fi F2, F1 fi F3, and F1 fi F4. Each
description of a causal link specified the cause, the effect, and the causal mechanism
linking them—for example, ‘‘A high quantity of ACh neurotransmitter causes a
long-lasting flight response. The duration of the electrical signal to the muscles is
longer because of the excess amount of neurotransmitter.’’ In addition, participants
were shown a summary diagram much like Fig. 1 (with values substituted for vari-
able names).

Which value was said to be characteristic on each dimension was counterbalanced
over participants. This was done to allow for any preexperimental associations par-
ticipants might have had between specific values (e.g., between a high quantity of a
neurotransmitter and an accelerated sleep cycle) and for the possibility that they
might infer associations between values based on qualities like ‘‘high’’ and ‘‘low’’
(e.g., associating a high quantity of a neurotransmitter with high body weight
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because both are ‘‘high’’). If we arbitrarily designate one value on each dimension as
‘‘+’’ and the other as ‘‘�,’’ then the values that were described as occurring with
probability 75%, in four between-subject counterbalancing conditions, were
‘‘++++,’’ ‘‘++��,’’ ‘‘+�+�,’’ and ‘‘+��+.’’ For example, a participant in the
‘‘+��+’’ condition who learned the Lake Victoria Shrimp category was told that
the 75% values were ‘‘high quantity of the ACh neurotransmitter’’ (the ‘‘+’’ value
on dimension 1), ‘‘slow flight response’’ (‘‘�’’ value on dimension 2), a ‘‘decelerated
sleep cycle’’ (‘‘�’’ value on dimension 3), and a ‘‘high body weight’’ (‘‘+’’ value on
dimension 4). As a result of this counterbalancing, the values on one dimension were
combined with those on another as serving the roles of the 75% values an equal num-
ber of times across participants. Dimension values were mixed in this way so that any
influence of interfeature relations that participants brought with them to the exper-
iment would be canceled out by averaging over participants. The features and a sam-
ple of the causal relations associated with all six categories are given in Appendix A.
(Appendix A also includes interfeature causal relationships that will be used in sub-
sequent experiments.)

2.1.2. Participants

Forty-eight New York University undergraduates received course credit or pay
for participating in this experiment.

2.1.3. Design

Participants were randomly assigned in equal numbers to one of the six catego-
ries, to either the common cause or the control condition, and to one of the four fea-
ture counterbalancing conditions.

2.1.4. Procedure

The experiment had three phases: learning, categorization, and inference. The
learning phase came first; the categorization and inference phases were then pre-
sented in counterbalanced order. All phases of the experiment were conducted by
computer, though each phase was introduced by spoken instructions.

In the learning phase, participants studied several screens of information about
the category at their own pace. All participants read a cover story and a description
of the characteristic and noncharacteristic values (including their likelihoods, 75 or
25%) on the four dimensions. Participants in the common cause condition also
learned about the three causal relations both in verbal form and in diagrammatic
form (much like Fig. 1). To ensure that all information was learned, participants
had to pass a multiple-choice test. In the control condition, this test consisted of 7
questions about the four dimensions and the likelihoods of the values on each dimen-
sion. In the common cause condition, the test contained an additional 14 questions
about the causal relations. While taking the test, participants were free to return to
the information screens they had studied; however, doing this obligated the partici-
pant to retake the test. The only way to pass the test and proceed to subsequent
phases was to take it all the way through without errors and without returning to
the initial information screens for help.
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In the feature inference phase, participants were shown descriptions of category
members in which one feature was unobserved and judged whether it was absent
or present. A description consisted of four lines of text, one for each of the four
dimensions. For the three dimensions that were observed, the text indicated whether
the feature was present (e.g., ‘‘a high quantity of ACh neurotransmitter’’) or absent
(e.g., ‘‘a low quantity of ACh neurotransmitter’’). For the unobserved dimension the
text was simply ‘‘???’’. Note that category membership was certain and emphasized;
the question asked was, for example, ‘‘Does this Lake Victoria Shrimp have a low
body weight or a high body weight?’’ Responses were entered by positioning a slider
on a scale whose ends were labeled, for example, ‘‘low’’ and ‘‘high’’; these responses
were recorded as a 0–100 rating, where 0 meant certainty that the feature was absent
(e.g., ‘‘low’’) and 100 meant certainty that it was present (e.g., ‘‘high’’). Inferences
were made about all 32 possible category members in which one feature is unob-
served and each of the other three features is observed to be either present or absent.
These items were presented in a different random order for each participant.

In the categorization phase, participants were presented with the same 32 exemp-
lars for which they inferred unobserved features. In this phase, however, the exemp-
lars were not labeled as known category members; instead participants were asked to
rate the likelihood that the exemplar was a member of the category (e.g., Lake Vic-
toria Shrimp). Responses were entered on a scale whose ends were labeled ‘‘sure that
it isn�t’’ and ‘‘sure that it is’’ (recorded as 0 = sure that it isn�t a category member,
100 = sure that it is). Items were presented in a different random order for each
participant.

2.2. Feature inference results

Initial analyses revealed no effect of which category participants learned, the order
of the two tasks, or the feature counterbalancing condition, and thus the results are
collapsed over these factors.

Fig. 3 presents feature inference ratings as a function of (a) the total number of
features observed present in an exemplar; (b) whether the common cause, F1, was
present or absent (if it was observed); and (c) condition (common cause or control).
In fact, inferences in the control condition were consistent with the typicality ap-
proach described earlier. Inferences about any of the four features were an increas-
ing, roughly linear function of the number of other features observed present.
Participants in this condition reasoned as if they expected the four features to be cor-
related with one another and thus to provide inferential support to one another.

In the common cause condition, inferences about F1 were inferences about a cause
given knowledge of its effects, whereas inferences about F2, F3, and F4 were infer-
ences about an effect given knowledge of its cause and other effects of this cause.
First consider inferences about F1 (Fig. 3A). As in the control condition, these in-
creased as a function of the number of other (now, effect) features observed present.
Interestingly, the slope of this function is greater in the common cause condition
than in the control condition, indicating that F2, F3, and F4 were seen as more
strongly predictive of F1 when they were construed as effects of F1 than when they



Fig. 3. Feature inference results from Experiment 1. (A) items in which F1 was the feature to be inferred,
and (B) items in which either F2, F3, or F4 was to be inferred.
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were construed merely as characteristic features. This influence of causal knowledge
on feature inference was confirmed by submitting each participant�s ratings to a
regression analysis in which the sole predictor was the number of features observed
present. The average weight assigned to this predictor was significantly greater in the
common cause condition than in the control condition (30.2 vs. 11.1), t (46) = 5.25,
p < .0001.

The influence of causal knowledge is also revealed in inferences about F2, F3, and
F4 (Fig. 3B). In the common cause condition these inferences were heavily influenced
by the presence or absence of the common cause, F1; other observed features had less
influence. For example, items with one feature present received much higher ratings
when that feature was F1 (as in the item 1x00, which represents F1 present, F2 unob-
served and to be inferred, F3 absent, F4 absent) than when it was one of the other
features (e.g., 0x10 or 0x01) (means = 68.0 and 25.7, respectively). Similarly, items
with two features received higher ratings when one of those features was F1 (e.g.,
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1x10 or 1x01) than when neither was F1 (e.g., 0x11) (means = 76.4 and 38.8). A com-
parison of the control and common cause conditions shows that causal knowledge,
when it was available, was implicated heavily in inference, such that inferences about
effects were based largely on whether their cause was present or absent.

However, these inferences deviated systematically from straightforward causal
reasoning, too. According to the causal Markov condition, an inference about an ef-
fect feature (when the common cause is observed) should not be influenced by the
presence/absence of any other effect feature (recall the flat lines in the lower panel
of Fig. 2). But, as can be seen in Fig. 3B, participants� inferences increased with
the number of effect features observed present. When F1 was observed absent, fea-
ture inference ratings were 14.0, 25.7, and 38.8 for objects possessing 0, 1, and 2 effect
features, respectively; when F1 was observed present, ratings were 68.0, 76.4, and
94.0 for objects possessing 0, 1, and 2 effect features (i.e., 1, 2, and 3 features overall),
respectively. That is, effect features provided inferential support to one another, even
though their common cause was observed. We will refer to this as a nonindependence

effect, because features which, on the straightforward causal reasoning account,
should be independent of one another are in fact treated as predictive of one another.

These conclusions are supported by statistical analysis. Each participant�s infer-
ences about effect features (F2, F3, and F4) were predicted from a multiple-regression
model in which the two predictors were (a) the number of features present and (b) a
term representing the presence or absence of F1. In evidence of the effect of causal
knowledge on inference, the average regression weight associated with F1 in the com-
mon cause condition (20.3) was both significantly greater than zero, t (23) = 5.75,
p < .0001, and significantly greater than that weight in the control condition (2.5),
t (46) = 4.61, p < .0001, which was itself not significantly different from zero,
t (23) = 1.58, n.s. Moreover, the average weight associated with the number of fea-
tures present was significantly greater than zero in both the common cause condition
(12.7), t (23) = 5.16, p < .0001, and the control condition (9.0), t (23) = 2.75, p < .05.
This sensitivity to number of features did not differ between the two conditions,
t < 1.

2.3. Categorization results

One possible explanation of the nonindependence effect is that it is driven by like-
lihood of membership in the category. This explanation goes as follows. Features
provide inferential support to one another because they make the item that possesses
them a better or more likely member of the category; such a category member, in
turn, is more likely to have a characteristic feature on an unobserved dimension. Re-
sults from the categorization phase allow us to rule out this explanation.

Because our goal is to explain the nonindependence effect, we focus here on the
categorization results for the same 24 items that elicited this effect in the feature
inference phase—that is, the 24 items in which the presence or absence of F1 was
observed and one of the effect dimensions was unobserved. On the one hand, in
the control condition we found that participants� categorization ratings were highly
correlated with their judgments regarding whether an exemplar possessed an un-
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known feature, r = .986. In contrast, the correlation between feature inference and
categorization ratings was much weaker in the common cause condition
(r = .696). To demonstrate this weaker relationship between category membership
and feature inference, Fig. 4A presents the categorization results from the common
cause condition organized in the same way that the feature inference results are or-
ganized in Fig. 3B: according to whether F1 was present or absent, and by the overall
number of characteristic features present in an item.
Fig. 4. (A) Categorization results from common cause condition of Experiment 1. (B) Relationship
between categorization and inference results from common cause condition for two exemplars.
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If the nonindependence effect were due to degree of category membership, then
the slopes of the ‘‘common cause’’ lines in Fig. 3B should be mirrored in the catego-
rization ratings in Fig. 4A. In fact, comparison of the figures shows that whereas fea-
ture inference ratings increased as a function of the number of effect features when
the common cause was absent, the corresponding categorization ratings decreased as
a function of the number of effect features. Apparently, when the common cause was
known to be absent, participants judged exemplars to be worse category members to
the extent they possessed many effect features because such exemplars contradict the
causal relationships that they believed the category possessed: if the common cause is
absent, then so too should be its effects.

An example of this dissociation between feature inference and categorization in
the common cause condition is presented in Fig. 4B. Participants were more likely
to infer that exemplar 0x11 possessed a characteristic feature on the second dimen-
sion than exemplar 0x00, and they made this judgment despite the fact that they con-
sidered 0x00 to be a better category member than 0x11. In other words, the
nonindependence effect manifested by the different inference ratings for 0x11 and
0x00 cannot be due to 0x11 being viewed as a better or more likely category member
than 0x00.

2.4. Discussion

The first purpose of this experiment was to show the use of causal knowledge in
feature inference. On this, the results were clear. In the common cause condition,
inferences about the common cause feature were based heavily on the presence/ab-
sence of its effects, and inferences about effect features were based heavily on the
presence/absence of their cause. In this respect, inferences in the common cause con-
dition differed sharply from analogous inferences in the control condition.

The second purpose was to begin to discover how causal knowledge is used in infer-
ence. We took, as an initial standard against which to evaluate participants� perfor-
mance, a straightforward causal reasoning theory which includes the causal
Markov condition. Participants� inferences deviated systematically from this theory,
in that inferences were generally stronger as a function of the number of typical, or
characteristic, features the exemplar had, even when those features were supposed
to have been screened off from the feature in question. This finding of a nonindepen-
dence effect is important, because the causal Markov condition is crucial to the stan-
dard normative account of causal reasoning (Bayesian network theory) and therefore
to recent psychological models based on this account (e.g., Gopnik et al., 2004).

Another important result was the effect of typicality in the control condition. This
result obtained despite the fact that control participants had just learned that all four
features had the same base rate (75%), a situation which might have led one to expect
that the same rating would be produced on each feature inference trial. Instead, the
results amounted to another form of violation of independence, as ratings indicated
that they thought characteristic features were predictive of one another. Note that
these findings extend those of Yamauchi and Markman (2000), who also obtained
a nonindependence effect, but only when participants were first trained to classify
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examples of category members. Experiment 1�s participants, in contrast, never ob-
served any category members. Apparently, a mere verbal statement of a category�s
characteristic features is sufficient to induce people to infer the presence of one char-
acteristic feature given the presence of others, even in the absence of observed cate-
gory members.

One rationale we gave for nonindependence was that degree-of-category-member-
ship might be a reasonable basis for feature inference. But if this were true, then the
nonindependence effect should have been mirrored in categorization ratings of the
very same items. Instead, in the common cause condition there was a strong disso-
ciation between feature inference and categorization. Analysis revealed that this dis-
sociation arose because one factor that determined an exemplar�s goodness of
membership—whether observed features contradicted or corroborated the category�s
interfeature causal links—did not influence feature inference. This finding replicates
previous research by Rehder (2003a; 2003b; Rehder and Hastie, 2001), who found
that exemplars are good category members to the extent they manifest the expected
pattern of correlations between causally related features.

The fact that inferences in Experiment 1 were insensitive to whether the exemplar
manifested expected interfeature correlations suggests that the common cause partic-
ipants simply accepted what we told them and treated the exemplars as category
members while inferring their features. And if the common cause participants ac-
cepted the exemplars� category membership, there�s no reason to believe that the con-
trol group did not as well.2 Thus, degree-of-category membership turns out to an
inadequate explanation of nonindependence in feature inference in either condition.
2 The claim that feature inference is independent of degree of category membership is consistent with a
series of studies by Murphy, Ross, and Malt, who found that inferences about items were generally not
influenced by uncertainty about whether the items were indeed members of the categories that supported
those inferences (Malt, Ross, & Murphy, 1995; Murphy & Ross, 1994; Ross & Murphy, 1996).

Another possible explanation of the nonindependence effect is that the exemplar with the to-be-
predicted feature was perceived as more typical of the category. (Note that in this discussion it is important
to distinguish our empirical effect—the fact that inferences increased in strength with the exemplar�s
number of characteristic features [a.k.a., the nonindependence effect]—from typicality as an explanation
for that effect.) It is important to consider typicality separately from degree of category membership
because the two are not always equivalent (e.g., Armstrong, Gleitman, & Gleitman, 1983; Barsalou, 1985;
Burnett et al., in press). Nevertheless, we believe that the categorization results have ruled out the
typicality explanation as well, on the assumption that if our participants had been asked for ratings of
typicality rather than likelihood of category membership, the results would have been the same. This
assumption is supported in several ways. First, the only relevant reason why typicality and likelihood of
category membership diverge is that the former can be influenced by a reasoner�s ideals or goals (e.g.,
Barsalou, 1985; Burnett et al., in press). This is not a problem in the current study, because participants did
not associate ideals or goals with the categories. Second, in a recent study the second author has asked for
typicality ratings of stimuli very much like the ones used here, and the results were identical. Finally,
empirical research suggests that judgments of typicality are sensitive to interfeature consistency, just as
judgments of category membership are. For example, Ahn et al. (2002) found that typicality in natural
categories is influenced by consistency with known causal relations (see also Malt & Smith, 1984). Thus,
there is good reason to believe that, if participants in our experiments had been asked for typicality ratings,
those ratings would have been sensitive to causal consistency and would therefore have diverged from
feature inference ratings in just the same way that likelihood-of-category-membership ratings did.
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The puzzle then is: Why are features inferentially dependent on one another such
that characteristic features are predictive of other characteristic features? We attempt
to answer this question in the remainder of this article.
3. Experiment 2

One general approach to understanding the nonindependence effect is to consider
what sources of knowledge may have influenced participants� inferences in addition
to the interfeature causal relations we provided them with. In Experiment 1 we con-
trolled for one sort of prior knowledge: By mixing the values that were characteristic
on the four dimensions, we averaged over any preexperimental inter-feature associ-
ations that participants might have had. Still, we can envisage another, more general
sort of prior knowledge that might have been responsible for the nonindependence
effect. Though the specific categories we used were novel, they came from domains
with which participants have a wealth of experience, namely, biological kinds, non-
living natural kinds, and artifacts. Participants may have augmented the categories�
causal models with domain knowledge in a way that led to the nonindependence
effect.

For example, participants who learned about Lake Victoria Shrimp and Kehoe
Ants may have used their knowledge from the domain of biology while predicting
unobserved features for those categories. It has been argued that people believe that
biological kinds have underlying properties and biological mechanisms that give rise
to observable features (Gelman, 2003; Medin & Ortony, 1989). As a result, partici-
pants may have assumed that the four features of Lake Victoria Shrimp and Kehoe
Ants were each caused by the biological mechanisms associated with those species. If
this were the case, it would explain the violations of independence found with these
categories, because from the presence (absence) of one feature one can infer the pres-
ence (absence) of the underlying mechanism, and then from the underlying mecha-
nism one can then infer the presence (absence) of an unobserved feature. Said
differently, participants may have reasoned that the biological mechanisms associ-
ated with Lake Victoria Shrimp and Kehoe Ants had operated normally when the
ant or shrimp possessed many characteristic features, and hence that those mecha-
nisms were likely to have produced a characteristic value on the unobserved feature
dimension as well. Conversely, when the ant or shrimp possessed many uncharacter-
istic features, they reasoned that something had gone awry with the operation of that
species� normal mechanisms, and hence the presence of a characteristic feature was
less likely.

A similar pattern of reasoning may have also occurred for our novel artifact cat-
egories. There is evidence demonstrating the importance of causal history in people�s
mental representation of artifacts (Bloom, 1998; Keil, 1995; Matan & Carey, 2001;
Rips, 1989), and our participants may have assumed that the characteristic features
of Romanian Rogos (an automobile) or Neptune Computers arose as an effect of
their manufacturing process. When a particular Rogo or Neptune Computer
exhibited many characteristic features they may have inferred that this process
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had operated normally, and hence were more likely to infer a characteristic value on
the unobserved feature dimension. Finally, even for our nonbiological natural kinds
(Myastars and Meteoric Sodium Carbonate) participants may have assumed the
presence of a causal chain of events that led to their formation, which in turn led
to stronger inferences to characteristic features when other characteristic features
were already present.

Another way we can imagine that domain knowledge may have contributed to the
results from Experiment 1 is that participants could have spontaneously constructed
interfeature relations among a category�s characteristic features. For example, partic-
ipants who were told that typical Myastars were especially hot and had a large num-
ber of planets may have used their domain knowledge to construct some reason why
hot temperature caused large number of planets (or vice versa), whereas those who
were told that Myastars were hot and had few planets may have constructed a reason
for why hot temperature produces few planets (or vice versa). On the feature infer-
ence task, the presence of these self-generated explanations would then have led par-
ticipants to infer the presence of one characteristic feature given the presence of
others (producing the apparent violations of independence).

In Experiment 2 we address the possibility that people augment their causal mod-
els with domain knowledge by using a category whose domain is not identified. Par-
ticipants were told that they would be learning about a new kind of object named
‘‘Dax’’ with four features labeled A, B, C, and D which each occurred with proba-
bility 75%. Because participants had no basis for believing that Daxes were biolog-
ical, an artifact, or any other type of category, they had no reason to assume the
presence of any domain-specific kind of underlying mechanism responsible for gen-
erating observable features.

3.1. Method

3.1.1. Materials
Participants were told that Daxes were some new kind of object about which they

should learn. In the common cause condition they were in addition told that feature
A caused features B, C, and D. During the feature inference and categorization tasks
participants were presented with Daxes whose feature lists indicated whether each
feature was present or absent or unknown. For example, during the feature inference
task participants were told about a Dax that had ‘‘A,’’ ‘‘no B,’’ ‘‘C???,’’ and ‘‘D’’ and
asked to infer whether it had feature C or not.

3.1.2. Participants

Forty-eight New York University undergraduates received course credit or pay
for participating in this experiment.

3.1.3. Design

Participants were randomly assigned in equal numbers to either the common
cause or the control condition, and to the task-order counterbalancing factor
(whether the classification or the inference task was performed first).
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3.1.4. Procedure

The procedure was nearly the same as that in Experiment 1. In the common cause
condition there were fewer questions on the multiple-choice test because no informa-
tion about causal mechanisms was provided. Also, there were no unobserved fea-
tures in the exemplars presented during the categorization phase.3

3.2. Feature inference results

The feature inference results are presented in Fig. 5. Results in the common cause
condition were comparable to those in Experiment 1. Most importantly, though
inferences about effect features (Fig. 5B) were based heavily on the presence/absence
of the common cause F1, they also increased with the number of other effect features
present. That is, common cause participants again exhibited a substantial noninde-
pendence effect, and did so despite the blank materials used in this experiment.

Per-participant regression analyses identical to those conducted in Experiment 1
confirmed that, for inferences about effect features (Fig. 5B), the average regression
weight associated with F1 in the common cause condition (13.3) was both signifi-
cantly greater than zero, t (23) = 2.31, p < .0001, and significantly greater than the
corresponding weight in the control condition (1.8), t (46) = 4.09, p < .0001. In evi-
dence of the nonindependence effect, the average weight associated with the number
of features in the common cause condition (5.7) was significantly greater than zero,
t (23) = 2.38, p < .05.

The results in the control condition differed from those in Experiment 1 in that,
overall, inferences did not increase with the total number of features present (i.e.,
lines in Fig. 5 for the control condition are essentially flat). At first glance, this seems
to suggest that the nonindependence effect found in the control condition of Exper-
iment 1 was absent here. Also unlike Experiment 1, however, there was a significant
effect of task order (inference first vs. categorization first) on the influence of the
number of features present. Participants who performed the categorization task first
gave inference ratings that increased with the number of features present; that is,
they showed the same nonindependence effect seen in Experiment 1. In contrast, par-
ticipants who performed the inference task first showed a nonindependence effect in
the opposite direction; their inference ratings decreased as the number of features
present increased. These trends can be seen in Fig. 6 (which shows data averaged
over all 32 feature inference items). Consistent with the effect of task order, a two-
way mixed ANOVA of the control condition revealed a significant interaction be-
tween number of features present and task order, F (3,66) = 9.21, p < .0001.
3 This was the case for the classification task in Experiments 3–5 as well. Because the results from the
classification tests from these experiments are thus not directly comparable to those from the feature
inference task (as they were in Experiment 1), we omit reporting classification test results in the remainder
of the article.



Fig. 5. Feature inference results from Experiment 2. (A) Items in which F1 was the feature to be inferred,
and (B) items in which either F2, F3, or F4 was to be inferred.
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3.3. Discussion

The purpose of Experiment 2 was to test whether domain knowledge about bio-
logical kinds, nonliving natural kinds, and artifacts was responsible for the noninde-
pendence effect found in Experiment 1. The fact that this effect obtained even with
the use of blank categories suggests that the nonindependence effect is not due to
knowledge of underlying mechanisms in those domains. Moreover, in the absence
of domain knowledge, it is hard to see on what basis participants would have spon-
taneously generated interfeature explanations such as ‘‘B causes C.’’

As in Experiment 1, we found violations of feature independence in the control
condition. However, a surprising result of Experiment 2 was that the direction of this
violation depended on whether the feature inference task preceded or followed the



Fig. 6. Feature inference results from control condition of Experiment 2.
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categorization task. Though this effect of task order is largely incidental to the thrust
of this paper, it does call for a brief explanation. We suggest that the behavior of the
participants who performed the inference task first and who were less likely to infer
the presence of a characteristic feature in an item that already possessed more char-
acteristic features can be understood as an instance of the ‘‘gambler�s fallacy’’ (Tver-
sky & Kahneman, 1974). These participants treated the four features as a series of
events in which the occurrence of one kind of outcome (likely or unlikely) in the
three observed events predicted the occurrence of the other kind of outcome (unli-
kely or likely) in the fourth, unobserved event. This did not happen in Experiment
1 because in that experiment it was clear that the four features were features of a cat-
egory. In Experiment 2, it was clear that the four features were indeed features of a
category when the categorization task was performed first; when the inference task
was performed first, it was less clear. This is a vivid illustration of the power of cat-
egories to guide inference. For events of a general kind, people often take typical out-
comes as predictive of atypical ones; however, when the same events are interpreted
as features of a category, characteristic features predict more characteristic features
instead.

3.4. Individual response patterns

A primary finding in Experiments 1 and 2 was that the inferences of common
cause participants were sensitive to both the specific causal relations that were pro-
vided, and the presence or absence of characteristic features. However, one possibil-
ity we have not yet considered is that this pattern of results might have arisen as a
result of averaging over participants. That is, some common cause participants
may have reasoned normatively (i.e., honored the causal Markov condition) whereas
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others may have ignored the causal relations and responded only on the basis of
typicality.

To examine this possibility, Fig. 7 presents the two regression weights for each
participant in Experiments 1 and 2: the weight associated with the presence/absence
of F1, and the weight associated with the overall number of features observed pres-
ent in an item. In Fig. 7, participants are located in regression weight space, so that
the relative weights assigned to these two factors by each participant can be readily
seen.

In the common cause conditions of Experiments 1 and 2, there was variation in
strategy. Informally, the response patterns given by these participants fell into a
few different classes. Some were roughly consistent with the causal Markov condi-
tion in assigning high weight to the presence/absence of the common cause and little
or no weight to the presence/absence of other features. These participants gave uni-
formly low ratings when F1 was absent, and uniformly high ratings when F1 was
present. Others were consistent with typicality (as were most of the responses given
in the control conditions); these participants gave little or no weight to F1 and in-
stead reasoned from the overall number of features observed present in an item.
Most importantly, a large number of participants were ‘‘compromisers’’ who as-
signed moderate weight to both factors. That is, whereas one might have supposed
that the trends reported in Experiments 1 and 2 were artifacts of averaging across
‘‘causal Markov’’ and ‘‘typicality’’ participants, it is in fact the case that a large num-
ber of participants showed just the trends that we have reported. These participants
made powerful use of causal knowledge, but their inferences also showed the nonin-
dependence effect.
Fig. 7. Individual differences in Experiments 1 and 2.
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4. Experiment 3

To summarize our findings so far, we have demonstrated a robust nonindepen-
dence effect, and also provided evidence against a number of explanations for that
effect. First, the dissociation between inference and classification (Experiment 1)
indicates that feature inference is not mediated by the exemplar�s perceived likeli-
hood of category membership. Second, an analysis of individual differences indicates
that the nonindependence effect is not an artifact of averaging over participants. Fi-
nally, this effect was not due to domain knowledge that supports the spontaneous
construction of interfeature relations, or which informs participants about the pres-
ence of underlying causal mechanisms (Experiment 2).

In Experiment 3 we continue to consider the possibility that the nonindependence
effect arises not because people are suboptimal causal reasoners, but rather because
they were reasoning with knowledge in addition to that which we provided.
Although Experiment 2 ruled out the possibility that this knowledge was domain
specific, in Fig. 8 we present two domain-general ways in which our participants
may have extended the categories� causal models so as to produce a nonindepen-
dence effect. According to the first possibility, the Feature Uncertainty Model (Fig.
8A), participants have doubts about whether an exemplar�s observed features are
veridical. For example, when they were presented with a category member that
had F1 but not F2 and F3 and were asked to infer F4, the absence of F2 and F3

may have led them to doubt that F1 was really present (because F1 should have pro-
duced F2 and F3). Uncertainty about F1�s presence meant that the inference to F4

was weakened.
The causal model in Fig. 8A represents this situation by encoding whether fea-

tures are present (nodes F1–F4 with dotted lines) separately from the evidence that
those features are present (nodes F0

1–F
0
4 with solid lines). The fact that the evidence
Fig. 8. Alternative causal models for the common cause network of Fig. 1.

(A) Feature UncertainityModel for Com-
mon Cause network.

(B) Underlying MechanismModel
for Common Cause network.
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nodes are informative, but not infallible, is represented by the probabilistic causal
linkages from Fi to F0

i reflecting that the presence (absence) of a feature tends to pro-
duce evidence that the feature is present (absent). According to this model, (appar-
ent) violations of the causal Markov condition arise because even when evidence for
the presence of the common cause F1 is available ðF0

1Þ, additional evidence that one
or more of its effects are present allows one to be even more certain that F1 is truly
present. Greater certainty regarding the common cause allows one to make more
confident inferences to an unknown effect.

Our second proposal is the Underlying Mechanism Model (Fig. 8B). According to
this model, people have a bias to view categories as possessing underlyingmechanisms,
and this bias leads them to reason from observed features to the presence of those
mechanisms, and then to the presence of an unobserved feature. Note that this model
is structurally identical to the possibility—considered in Experiment 2—that partici-
pants augment their causal models with knowledge of the underlying mechanisms
associated with biological kinds, artifacts, and nonliving natural kinds. The Underly-
ingMechanismModel assumes, however, that the bias to view categories as possessing
underlying mechanisms is domain general. As a result, the knowledge about underly-
ing mechanism is schematic, or skeletal, in that no understanding of how the causal
mechanism operates is assumed to be present. Despite the abstract nature of this
knowledge, however, it is assumed to be sufficient to influence feature inference.

The purpose of Experiments 3–5 was to test these two alternative causal models.
We start in Experiment 3 by testing some of the predictions these models make for
more complex inferences than those tested thus far. In Experiments 1 and 2 we found
that participants made use of their knowledge of causal relations to make inferences
between features that are directly connected by causal links (i.e., an effect is more
likely when its immediate cause is present, and vice versa). However, Bayesian net-
works also make predictions for indirect inferences in which features are separated
by more than one causal link. For example, although in a common cause network
it would be invalid to infer the state of one effect from another when the state of
the common cause was known (the causal Markov condition), this inference would
be licensed when the state of the common cause was unknown. This is the case be-
cause from the state of the known effect one could infer the likely state of the com-
mon cause, and then the likely state of the unknown effect.

In Experiment 3 we assess the manner in which participants make indirect infer-
ences by presenting them with exemplars with two unobserved features and asking
them to infer one of them. Fig. 9 presents the predictions for such inferences for both
the simple common cause model (Figs. 9A and B) and for the Feature Uncertainty
and Underlying Mechanism Models (Figs. 9C and D). (In Fig. 9, the number of fea-
tures present ranges from 0 to 2 because each exemplar had two observed features.)
For the simple common cause model, the predictions for direct inferences are the
same as those in Fig. 2: Inferences to the common cause become stronger as the num-
ber of effects present increases (Fig. 9A), and inferences to an effect are independent of
other effects when the common cause is observed (Fig. 9B). The new prediction in Fig.
9B is for indirect inferences: When the common cause is unknown, inferences to an
effect should be stronger as a function of the number of other effects present.



Fig. 9. Normative predictions for Experiment 3.
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The predictions of the Feature Uncertainty and Underlying Mechanism Models
for Experiment 3 are presented Figs. 9C and D. In contrast to the simple common
cause model, these models predict that inferences to an effect should be sensitive
to the number of other effects when the common cause is observed—that is, they pre-
dict the nonindependence effect found in Experiments 1 and 2. Nevertheless, Fig. 9D
also shows that both models predict that indirect inferences (i.e., cases when the
common cause is unobserved) should exhibit greater sensitivity to the number of
other effects (i.e., the slope should be more positive) as compared to direct
inferences.4
4 The ordinal predictions in Fig. 9 hold within condition for a wide range of parameterizations of the
Bayes� nets shown in Fig. 8 when the interfeature causal links are relations of probabilistic rather than
deterministic necessity and sufficiency. In particular, they hold when (a) causal links are of equal strength,
and (b) each of the features of the causal model are equally probable (as stipulated in the description of the
categories presented to participants).
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A finding that both direct and indirect inferences follow the overall pattern shown
in Figs. 9C and D will provide additional support for the two alternative causal mod-
els we have proposed as explanations for the nonindependence effect. Whereas these
models make the same predictions for Experiment 3, starting in Experiment 4 we will
begin to conduct tests that discriminate between them. We will show that although
the models make the same predictions for a common cause network, they make dif-
ferent predictions for other network topologies.

4.1. Method

4.1.1. Materials

In Experiment 3 we returned to the novel categories first used in Experiment 1
(Lake Victoria Shrimp, Kehoe Ants, etc.). However, to provide a bit more generality
to our findings, we made a minor modification to the description of the feature val-
ues. Instead of the characteristic and uncharacteristic features being polar opposites
(e.g., ‘‘fast flight response’’ vs. ‘‘slow flight response’’), the uncharacteristic feature
was described as normal relative to a superordinate category (e.g., ‘‘75% of Lake Vic-
toria Shrimp have a fast flight response, whereas 25% have a normal response’’).

4.1.2. Participants

Forty-eight Northwestern undergraduates received course credit or pay for partic-
ipating in this experiment.

4.1.3. Design

Participants were randomly assigned in equal numbers to either the common
cause or the control condition, and to one of the six categories. The order of the clas-
sification and inference tasks was randomized for each participant.

4.1.4. Procedure
The procedure was identical to that in Experiment 1, with the exception that the

exemplars presented on the feature inference task possessed two unobserved fea-
tures, and participants were asked to infer one of them. During this task 48 distinct
feature inference problems were presented.

4.2. Feature inference results

Initial analyses revealed no effect of which category participants learned or the or-
der of the two tasks, and thus the results are collapsed over these factors. The results
are presented in Fig. 10. When inferring the presence of feature F1, both the common
cause (Fig. 10A) and control (Fig. 10C) participants increased their ratings as a func-
tion of the total number of features already present. Ratings were again more sensi-
tive to the total number of features for the common cause group, which suggests
that, as in Experiments 1 and 2, they reasoned backwards from the effect features
to the common cause feature. Per-participant regression analyses with number of
features as the predictor confirmed that the effect of the number of features was sig-



Fig. 10. Feature inference results from Experiment 3.
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nificant in both conditions (both p�s < .0001) but that the regression weight was
greater in the common cause (29.6) than in the control condition (13.6),
t (46) = 2.66, p < .05.

The results of interest are those in which an effect feature is inferred as a function
of whether the common cause is present, absent, or unobserved and the number of
effect features present (Fig. 10B). The results confirm the predictions of the Feature
Uncertainty and Underlying Mechanism Models. As in Experiments 1 and 2, when
the common cause feature is observed ratings increase as the number of effects in-
creases. However, this sensitivity to number of effects is stronger when the common
cause is unobserved, as predicted by our two alternative causal models (Fig. 9D).

Per-participant regressions were conducted with five predictors: a contrast code
representing whether the common cause was observed or unobserved; a contrast
code representing whether, if it was observed, the common cause was present or
absent; the number of effect features present in the exemplar; and two predictors
representing the interactions between the contrast codes and the number of effects.
As expected, there was an overall effect of whether the common cause was present
or absent [regression weight of 15.7, significantly different from zero, t (23) = 4.82,
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p < .0001]. In addition, there was a significant effect of the number of effect features
observed present [weight of 20.7, t (23) = 4.43, p < .0001]. Importantly, the influence
of the number of effect features was moderated by whether the common cause was
observed or unobserved, t (23) = 4.98, p < .0001, confirming that the positive slope
in Fig. 10B was significantly greater when the common cause was unobserved than
when it was observed.

As expected, results in the control condition (Fig. 10D) were a simple function of
the number of effect features present (weight of 12.9), t (23) = 3.00, p < .01.

4.3. Discussion

The purpose of Experiment 3 was to test the patterns of inference predicted by the
Feature Uncertainty and Underlying Mechanism Models. There were two notable
results. First, as in Experiments 1 and 2, in the common cause condition inferences
to an effect feature were stronger to the extent that other effect features were present
when the common cause was observed, an apparent violation of the causal Markov
condition. Second, when inferring an effect feature, participants� ratings were even
more sensitive to the number of other effects when the common cause was unob-
served. This pattern of results was predicted by both Feature Uncertainty and
Underlying Mechanism Models. In particular, these models explain the apparent
violation of the causal Markov condition in terms of participants� reasoning with
a more complex model than the one with which we provided them, one which
assumes that observed features are not veridical, or that features are related by
unstated causal mechanisms.
5. Experiment 4

The goal of Experiment 4 is to discriminate between the Feature Uncertainty and
Underlying Mechanism Models. To accomplish this, instead of the common cause
network used in Experiments 1–3 we used the common effect structure shown in
Fig. 11A. In the common effect network, one category feature (F4) is independently
caused by each of the other features (F1, F2, and F3). To understand the unique pre-
dictions that the two models make for a common effect structure, we first consider
the predictions made by the common effect model itself for the same direct and indi-
rect inference problems used in Experiment 3 (ones in which two features are ob-
served and the task is to infer one of the two unobserved features). These
predictions are shown in Figs. 12A and B. As expected, when inferring the common
effect feature F4, inferences should be stronger to the extent that more causes are
present (Fig. 12A). Also as expected, when inferring one of the cause features
(Fig. 12B), inferences are stronger when the common effect is present, weaker when
it is absent, and intermediate when it is unknown.

Of special interest is the sensitivity of inferences to a cause feature as a function of
the number of other causes present, and how that sensitivity depends on whether the
common effect is present, absent, or unobserved (Fig. 12B). When the common effect



Fig. 11. Alternative Common Effect Models.

(B) Feature Uncertainty Model for
Common Effect network.

(C) Underlying Mechanism Model for
Common Effect network.

(A) Common-Effect
Model.
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is absent or unobserved, inferences to a cause should be independent of the other
causes. This is because causes are (unconditionally) independent of one another in
a common effect network. In contrast, when the common effect is present, inferences
to a cause should be weaker when another cause is present, because that other cause
provides a potential explanation of the common effect. The weakened inference to a
cause in the presence of another cause is an example of discounting in the case of mul-
tiple sufficient causation during causal attribution (Morris & Larrick, 1995). The dis-
tinct pattern of predictions associated with a common cause versus a common effect
network has been the focus of considerable investigation in both the philosophical
and psychological literatures (Rehder & Hastie, 2001; Rehder, 2003a; Reichenbach,
1956; Salmon, 1984; Waldmann & Holyoak, 1992; Waldmann et al., 1995).

In Figs. 11B and C we present Feature Uncertainty and Underlying Mechanism
versions of a common effect network, and the predictions of those models are pre-
sented in Figs. 12C–F. The two models differ regarding their predictions when a
cause feature is being inferred. On the one hand, the Underlying Mechanism Model
predicts that the slope of each line will be shifted to the positive (Fig. 12F) relative to
the basic common effect model. This is the case because from any cause one can infer



Fig. 12. Normative predictions for Experiment 4.
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another cause, because those causes are themselves linked by an underlying mecha-
nism (Fig. 11C).5 In contrast, the Feature Uncertainty model (Fig. 11B) predicts that
a cause feature does not imply another cause when the common effect is unobserved
(Fig. 12D). This is the case because causes are independent of one another, and hence
knowledge of one cause yields no information about another. In Experiment 4 we
test whether indirect inferences follow the pattern predicted by the Feature Uncer-
tainty Model or the Underlying Mechanism Model.

5.1. Method

5.1.1. Materials

The materials used in Experiment 4 were identical to those in Experiment 3, ex-
cept that common effect participants were taught the three causal links that make
up a common effect network: F1 fi F4, F2 fi F4, and F3 fi F4 (see Appendix A).
5 Once again, the ordinal predictions in Fig. 12 hold within condition assuming that (a) the causal
relations are probabilistic and of equal strength, and (b) each feature is equally probable. An exception is
the predictions for the Underlying Mechanism model when the common effect is observed (Fig. 12F). In
that case, reasoning through the underlying mechanism could potentially outweigh the discounting effect
such that even the F4 present line in Fig. 12F would have a positive shift in slope.
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5.1.2. Participants

Forty-eight New York University undergraduates received course credit or pay
for their participation.

5.1.3. Design
Participants were randomly assigned in equal numbers to either the common ef-

fect or the control condition, and to one of the six categories. The order of the clas-
sification and inference tasks was randomized for each participant.

5.1.4. Procedure

The procedure was identical to that in Experiment 3.

5.2. Feature inference results

Analogous to Experiment 3, the 48 feature inference trials were grouped according
to the number of features observed present in the exemplar and whether the to-be-in-
ferred feature was the common effect or one of the cause features (and the latter results
were grouped according to whether the common effect was present, absent, or unob-
served). There was no effect of which category participants learned or the order of
the two tasks, and thus the results are collapsed over these factors. The results are pre-
sented in Fig. 13. When inferring the presence of feature F4, participants in both the
common effect (Fig. 13A) and control (Fig. 13C) conditions increased their ratings
as a function of the total number of features already present. Ratings were more sen-
sitive to the total number of features for the common effect group, which suggests that
they reasoned forward from the presence/absence of the cause features to the presence/
absence of the common effect. Per-participant regressions with number of features as
the predictor confirmed that this effect was significant in both conditions (both
p�s < .0001) but that the regression weight was significantly greater in the common ef-
fect condition (35.2) than in the control condition (24.7), t (46) = 2.68, p < .05.

Fig. 13B presents the results when a cause feature is inferred as a function of
whether the common effect is present, absent, or unobserved, and the number of
other cause features present. The results confirm the predictions of the Underlying
Mechanism Model and contradict those of the Feature Uncertainty Model. First,
when the common effect is present, ratings decrease as the number of cause features
increases. Second, when the common effect is absent, ratings increase with the num-
ber of causes. Thus far, these results are consistent with the predictions of both alter-
native models. However, when the common effect feature is unobserved, ratings
increase with the number of causes present, as predicted by the Underlying Mecha-
nism Model but not the Feature Uncertainty Model (Figs. 12D vs. F).

Each participant�s inference ratings for items in which a cause feature was to be in-
ferred were predicted with a regression equation with five predictors: a contrast code
representing whether the common effect was present versus unobserved or absent, a
contrast code representing whether it was unobserved or absent, the number of cause
features present, and the two interactions between the contrasts and the number of
causes. Therewas a significant effect of the number of cause features present (regression



Fig. 13. Feature inference results from Experiment 4.
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weight of 7.84), t (23) = 2.72, p < .01, a significant difference betweenwhether the com-
mon effect was present versus unobserved or absent (weight of 5.4), t (23) = 8.42,
p < .0001, and a significant difference between whether the common effect was unob-
served versus absent (weight of 5.4), t (23) = 5.21, p < .0001. In addition, the effect of
number of causes was different when the common effect was present versus absent or
unobserved, t (23) = � 4.70, p < .0001, reflecting the fact that ratings decreased as
the number of causes increased when the common effect was present but not otherwise.
Finally, the effect of number of features didnot differ according towhether the common
effect was absent versus unobserved, t (23) = 1.74, p > .10, a result consistent with the
Underlying Mechanism Model but not the Feature Uncertainty Model.

As a direct test of the effect of number of features present when the common effect
was unobserved (crucial for discriminating between our two alternative models), the
ratings given to F4-unobserved items in the common effect condition were submitted
to regressions in which the sole predictor was the number of features observed pres-
ent. As expected, the average weight assigned to this predictor was significantly
greater than zero, t (23) = 4.77, p < .0001. Again, this is consistent with the Under-
lying Mechanism Model but not the Feature Uncertainty Model.



B. Rehder, R.C. Burnett / Cognitive Psychology xxx (2004) xxx–xxx 31

ARTICLE IN PRESS
As expected, results in the control condition (Fig. 13D) were a simple function of
the number of features present (weight of 21.9), t (23) = 5.75, p < .0001, replicating
the results of Experiment 3.

5.3. Discussion

One goal of Experiment 4 was to discriminate between the two models we have
advanced as explanations for the nonindependence effect. We tested a common effect
network in Experiment 4 because, unlike the common cause network used in Exper-
iments 1–3, for this network the two models make distinct predictions. We found
that inferring a cause in a common effect network was influenced by the presence
of other causes even when the common effect was unobserved, a result consistent
with the Underlying Mechanism Model but not the Feature Uncertainty Model.

Once again, we also observed a nonindependence effect in the control condition,
in which inferences were stronger to the extent that other features were present. In
fact, this finding provides additional evidence in favor of the Underlying Mechanism
Model over the Feature Uncertainty Model, because the Feature Uncertainty Model
provides no explanation of nonindependence when features are causally unrelated:
Features should be inferentially independent regardless of whether one is confident
that observed features are really present or not. In other words, only the Underlying
Mechanism Model provides a complete account of the results from all conditions of
the first four experiments.

Another goal of Experiment 4 was to demonstrate that participants� feature infer-
ences were consistent with some of the more complex predictions made by the
Underlying Mechanism Model, especially those that depend on the direction of cau-
sality in the network. To this end, it is instructive to compare performance on the
common cause network in Experiment 3 with the common effect network, because
those networks have the same structure if one ignores the direction of causality.
On the one hand, when a common cause is present, inferences to one of its effects
should strengthen with the number of other effects present (Fig. 9D). In contrast,
the analogous inference in a common effect network (to a cause when the common
effect is present) can weaken with the number of other causes present, because of a
discounting effect that arises when other causes already provide an explanation for
the effect (Fig. 12F). In fact, these predictions are borne out in participants� feature
inference ratings (Figs. 10B and 13B). The fact that these inferences were sensitive to
the asymmetry in causal relationships provides yet further support for our claim that
our participants were engaged in causal reasoning with the network we have called
the Underlying Mechanism Model.
6. Experiment 5

In considering explanations for the nonindependence effect, we have been consid-
ering the possibility that participants are not suboptimal reasoners, but rather that
they were reasoning with causal knowledge other than that with which we provided
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them. In fact, the results of four experiments have provided support for the claim
that people�s default causal structure for categories includes the presence of an
underlying mechanism linking category features. However, because one must always
exercise caution in appealing to an unobserved variable (in this case, underlying cau-
sal mechanisms) to explain experimental results, it is important to garner support for
such a variable from sources which are as diverse as possible. To this end, in Exper-
iment 5 we tested yet a third network, a chain network in which feature F1 causes F2

which causes F3 which causes F4 (Fig. 14A).
Fig. 15A presents the predictions of the chain network for feature inference prob-

lems in which values on three dimensions are observed and the value on the fourth
dimension must be inferred (as in Experiments 1 and 2). For purposes of these pre-
dictions, we consider the ‘‘distance’’ of each observed feature from the to-be-inferred
feature: features that are separated from the unobserved dimension by one causal
link (i.e., immediate neighbors) versus those that are separated by two or three links.
Specifically, the number of features present at each distance is computed by scoring 1
point for each feature present and �1 for each one absent. (E.g., 1x10, has 2, �1, and
0 features at distances 1, 2, and 3, respectively; x011 has �1, 1, and 1 features at the
three distances; and so on). In Fig. 15A, the predictions as a function of the number
of observed features at distance 1 are collapsed over the numbers of features at dis-
tances 2 and 3; predictions for observed features at distance 2 are collapsed over the
numbers at distances 1 and 3; and so on. As expected, Fig. 15A indicates that infer-
ences to a characteristic feature should be stronger to the extent that its immediate
neighbor(s) in the causal chain are present. But it also demonstrates how the causal
Markov condition predicts that features that are not immediate neighbors (those 2 or
3 causal links away) should have no influence, because they are screened off by the
immediate neighbors.

The Underlying Mechanism Model version of the chain network is presented in
Fig. 14C, and the predictions of that model are presented in Fig. 15C. Unlike the
simple chain model, the Underlying Mechanism Model predicts that features at
Fig. 14. Alternative chain models.

(A) Chain Model.

(B) Feature Uncertainty Model for Chain
network.

(C) Underlying Mechanism Model for
Chain network.



Fig. 15. Normative predictions for Experiment 5.
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distances 2 and 3 have predictive value for the unobserved feature (that is, it pre-
dicts a nonindependence effect), because of indirect inferences through the under-
lying mechanism. For example, if dimension 1 is unobserved, then one can infer
F1 not only from F2, but also from F3 and F4 by reasoning to the underlying
mechanism and then to F1. Importantly, the model also predicts that the inferential
value of F3 and F4 should be the same, because they both involve reasoning
through two causal links.

Another advantage of the chain model is that it provides yet one more test of
the Underlying Mechanism Model against the Feature Uncertainty Model. The
Feature Uncertainty version of the chain network is presented in Fig. 14B, and
its predictions are presented in Fig. 15B. In contrast to the Underlying Mechanism
Model, the Feature Uncertainty Model predicts that the influence of observed fea-
tures should be a decreasing function of their distance from the to-be-inferred
dimension. For example, if dimension 1 is unobserved, then one can infer F1 from
F0

2 by reasoning across two links (F0
2 to F2 to F1), from F0

3 by reasoning across
three links (F0

3 to F3 to F2 to F1), and from F0
4 by reasoning across four links

(F0
4 to F4 to F3 to F2 to F1). Thus, F

0
2 should have greater influence than F0

3, which
in turn should have greater influence than F0

4.

6.1. Method

6.1.1. Materials

The materials used in Experiment 5 were identical to those in Experiments 3 and
4, except that chain condition participants were taught the three causal links that
make up a chain network: F1 fi F2, F2 fi F3, and F3 fi F4 (see Appendix A).

6.1.2. Participants

Thirty-six Northwestern undergraduates received course credit for their
participation.



34 B. Rehder, R.C. Burnett / Cognitive Psychology xxx (2004) xxx–xxx

ARTICLE IN PRESS
6.1.3. Design

Participants were randomly assigned in equal numbers to either the chain or the
control condition, and to one of the six categories. The order of the classification and
inference tasks was randomized for each participant.

6.1.4. Procedure

The procedure was identical to that in Experiment 1. The 32 possible category
members in which one feature is unobserved and each of the other three features
is either present or absent were presented (in random order) during the feature infer-
ence test.

6.2. Feature inference results

The results are presented in Fig. 16 as a function of the number of features present
at each distance from the to-be-inferred dimension. Three aspects of the results in the
chain condition should be noted (Fig. 16A). First, as expected, features that were
immediate neighbors of the unobserved dimension had a large influence on the infer-
ence ratings. (We take the S-shaped pattern of responding in this condition to result
from ceiling and floor effects in which one immediate neighbor provides near maxi-
mal support for the presence/absence of the unobserved feature.)

Second, features that were two or three causal links away from the to-be-inferred
dimension also had an influence. This result represents an (apparent) violation of the
causal Markov condition with yet a third causal network topology. However, this re-
sult is predicted by both the UnderlyingMechanism and Feature UncertaintyModels.

Finally, the critical comparison concerns the influence of features two versus three
causal links away. In fact, whereas the Feature Uncertainty Model predicts that the
Fig. 16. Feature inference results from Experiment 5.
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influence of features at distance 2 should be greater than that at distance 3 (Fig.
15B), participants� judgments were equally influenced by information at those two
distances, a result consistent with the Underlying Mechanism Model (Fig. 15C).

Each participants� ratings were predicted with a regression equation with three
predictors corresponding to the distances. The regression weight associated with
the distance 1 predictor (21.9) was significantly greater than those for distances 2
(9.1) and 3 (8.1), both ps < .0001. Moreover, the difference between the distance 2
and distance 3 predictors did not approach significance (t < 1). As expected, and con-
sistent with the results of the first four experiments, results in the control condition
were a simple function of the overall number of features present (Fig. 16B).

6.3. Discussion

Experiment 5 assessed participants� pattern of feature inferences when features are
arranged in a causal chain. As in the first four experiments, inferences appeared to vio-
late the causal Markov condition, because observed features two or three causal links
away influenced inferences even when those features were screened off by immediate
neighbors. However, the results were consistent with the predictions of the Underlying
Mechanism Model in which reasoners assume that features are linked by underlying
causal relationships. Thus, the findings from the current experiment mean that the pre-
dictions of the UnderlyingMechanismModel have been confirmed in five experiments
testing three network topologies with six sets of materials drawn from three distinct
domains (and one set of blank materials in which the domain was unspecified).

The results of Experiment 5 were also inconsistent with the predictions of the Fea-
ture Uncertainty Model, because the influence of features two causal links away
from the to-be-inferred dimension was the same as that of features three links away.
This finding represents another failure of the Feature Uncertainty Model, which was
also unable to account for the results with a common effect network (Experiment 4),
or the presence of a nonindependence effect in any of our experiment�s control con-
ditions. That is, of the models we have considered, only the Underlying Mechanism
Model is able to uniquely account for all the experimental results.
7. General discussion

The purpose of this article was to discover how theoretical category knowledge—
specifically, knowledge of the causal relations that link the features of categories—
supports one of the primary functions of our conceptual system, namely, the ability
to go beyond the given and make inferences about the unobserved. As a starting
hypothesis we adopted the Bayesian network view of mental representation of causal
knowledge, one which affords a wealth of predictions regarding how the observed
features of an exemplar support the inference of other, currently unobserved (or
unobservable) features. In the following section we summarize our findings regard-
ing causal knowledge and the inference of unobserved features. We then consider the
nature of the Underlying Mechanism Model, its generality, and how it comes to be
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acquired. We close by discussing the implications our findings have for psychological
essentialism, category-based property induction, and causal reasoning more
generally.

7.1. Summary of causal-based feature inference

To start, we think that it is important to stress that the straightforward causal rea-
soning theory represented by Bayes� nets generally predicted participants� feature
inferences quite well. First, of course, participants were much more willing to infer
the presence of a feature to the extent that its causes and/or its effects were also pres-
ent. These results contribute to a collection of findings demonstrating the importance
of theoretical or explanatory knowledge in a variety of feature inference tasks. For
example, Lassaline (1996) found that the projection of a new property from one cat-
egory to another was stronger when causal knowledge supportive of that property
was provided (also see Sloman, 1994). Rehder and Ross (2001) found that the learn-
ing of a category via a feature inference task proceeded more rapidly when features
were related on the basis of prior knowledge. However, so far as we know, the cur-
rent study is the first to address the specific role of causal knowledge in inferring the
presence of an unobserved feature on a known stimulus dimension.

By itself, of course, the finding of stronger inferences between causally related fea-
tures may be unsurprising, as virtually any model that represented interfeature
semantic relations in some form would predict that the presence (absence) of one fea-
ture would imply the presence (absence) of the other. However, participants� infer-
ences exhibited some of the subtler patterns of inference predicted by Bayes� nets.
For example, whereas we found a discounting effect in the common effect network
of Experiment 4 in which inferences to a cause were weaker to the extent that other
causes of the common effect were present, the analogous inferences with a common
cause network (to an effect when the common cause was present) were stronger when
other effects were already present. These results add to the collection of findings that
people are sensitive to the asymmetries inherent in causal relations, and how those
asymmetries manifest themselves with networks with multiple variables. For exam-
ple, Waldmann et al. (1995) found that the ease of learning a category using a super-
vised learning paradigm depended on whether the correlational structure of the
training examples matched the causal structure that the participants were led to be-
lieve that the category possessed (either a common-cause or a common-effect struc-
ture). Similarly, Rehder (2003a) found that common-cause and common-effect
structures manifested asymmetries in how people classify new exemplars.

Taken together, these successes suggest that Bayes� nets provide a useful frame-
work within which to understand people�s inferences in light of their causal beliefs.
Nevertheless, our experiments also appeared to produce a robust violation of a key
property of Bayes� nets, the causal Markov condition. According to this condition,
variables should be treated as conditionally independent when they are ‘‘screened
off’’ from one another. Instead, we found a nonindependence effect whereby infer-
ences to characteristic features were stronger to the extent that the category member
already possessed other characteristic features.
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Stated informally, we think what is going on is this. When people see an exemplar
they first classify it into the categorywithwhich its combination of features ismost con-
sistent. After classification, however, reasoners limit their attention to only those as-
pects of the exemplar that are directly relevant to the inference task. Of course, this
includes any interfeature causal relations involving the unobserved dimension that
the reasoner may have explicit knowledge of (e.g., one predicts wings given flight
and vice versa). But in addition, to the extent that the exemplar has most or all of
the category�s characteristic features, it will also be considered a well functioning cate-
gory member. That is, the many characteristic features are taken as a sign that the
exemplar�s underlying causal mechanisms functioned (and/or are continuing to func-
tion) properly or normally for members of that kind. And if the exemplar�s underlying
mechanisms are operating normally, then they are likely to have produced a character-
istic value on the unobserved dimension. Conversely, when an exemplar has several
uncharacteristic features, it is a sign that the causal mechanisms have operated (are
operating) in some way that is unusual and unexpected for members of that kind,
and thus may have produced an unusual value on the unobserved dimension.

We formalized this explanation in terms of the Underlying Mechanism Model in
which the apparent violations of the causal Markov condition are understood in
terms of correct reasoning via an underlying mechanism that links all category fea-
tures. Importantly, this reasoning apparently does not depend on concrete knowl-
edge regarding the nature of the category�s underlying mechanism. We considered
the possibility that participants augmented their causal models of categories on
the basis of knowledge associated with particular domains, such as the causal mech-
anisms that govern biological kinds, that produce artifacts, and that lead to the for-
mation of nonbiological natural kinds. But the finding of a nonindependence effect
even when the kind of the category was left unspecified (in Experiment 2) indicates
that this reasoning does not depend on domain-specific knowledge like this. Instead,
we take the finding of a nonindependence effect even for ‘‘blank’’ categories as evi-
dence that (a) people have a domain-general bias to assume the presence of an under-
lying mechanism even without knowing what that mechanism is, and (b) despite the
schematic or skeletal nature of this knowledge, it is sufficient to lead reasoners to in-
fer characteristic features from other characteristic features.

7.2. The nature of knowledge of underlying mechanism

Although we believe our studies have made considerable progress in identifying
the explanation for the nonindependence effect, a number of open questions remain.
One concerns the exact structure of the underlying mechanism that links observable
features. According to the Underlying Mechanism Model, people assume that cate-
gories possess a single underlying mechanism that varies in how well it functions,
producing as a result either many or few characteristic features. But there are net-
works with hidden mechanisms with more complex topologies that would produce
the same nonindependence effect. For example, features might be related via a hier-
archy of underlying mechanisms rather than just one. Or, features might be causally
linked to one another directly rather than indirectly. One proposal related to this lat-
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ter idea is that natural kinds consist of homeostatic feature clusters (Boyd, 1999;
Kornblith, 1993) in which members of kinds exist because their features work to
maintain one another via mutual causal support. Construed as a mental representa-
tion (rather than ontology) of any category (not just natural kinds), homeostatic fea-
ture clusters would produce a nonindependence effect, because a characteristic
feature on an unobserved dimension would be more likely to the extent that many
other characteristic features were present to produce it. Finally, people may be com-
mitted to the idea that features causally linked, but their knowledge may be too va-
gue and ill-formed to be expressed in terms of any specific network topology.

Another open question concerns the nature of the cognitive processes that give
rise to the nonindependence effect. Our presentation of the Underlying Mechanism
Model assumed that our participants� category knowledge included a representation
of underlying mechanism plus the interfeature causal relations that we provided, and
that they then engaged in explicit causal reasoning with this causal model to predict
an unobserved feature. But another possibility is that people�s feature inferences are
a result of two processes: causal reasoning (which respects independence) and an-
other which encodes a general expectation of within-category correlations. An
important consequence of the Underlying Mechanism Model is that, because the
number of characteristic features displayed by exemplars will vary depending on
how well their underlying mechanisms are (or have been) functioning, these features
will be correlated with one another within the category, that is, even when only mem-
bers of the kind are considered. A cognitive process that encodes this expectation
would lead people to infer characteristic features on the basis of other characteristic
features (and to do so even when within-category correlations are in fact absent in a
given category�s observed data, Yamauchi & Markman, 2000).

7.3. The generality of the bias toward underlying mechanism

Another important issue concerns the generality of the bias to view category fea-
tures as related by underlying mechanisms. Our conclusion that this bias is universal
was based on the finding of a nonindependence effect for not only all three of the
category types we tested (biological kinds, nonliving natural kinds, and artifacts),
but also when the kind of the category was left unspecified (in Experiment 2). But
we can envisage a couple of ways in which the assumption of underlying mechanism
may be less general than we have suggested. One possibility is that in Experiment 2
participants exhibited a nonindependence effect not because they applied an abstract
and schematic Underlying Mechanism Model, but rather because they made use of
specific domain knowledge via analogy. For example, participants may have as-
sumed that the experimental category (‘‘Daxes’’) was some sort of biological kind,
and thus assumed that Daxes had the underlying causal mechanism associated with
those kinds. Another possibility is that the assumption of underlying mechanism,
while abstract, is restricted to certain general classes of categories, such as spatio-
temporally bound objects (and that Daxes were conceived of as, if not specifically
biological, at least some kind of object). However, studies conducted in the first
author�s laboratory provide evidence that the nonindependence effect obtains for cat-
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egories that are not spatio-temporally bound objects, and for which the use of anal-
ogy is unlikely. Undergraduate participants were instructed on a novel type of eco-
nomic system, weather system, or society whose features formed a common-cause
network, and violations of screening off were found: Effect features led participants
to infer the presence of other effect features even when the common cause was ob-
served (Roofeh, 2003). Apparently, just like in the current experiments, participants
assumed that the features were causally linked such that they provided each other
mutual inferential support. Moreover, because we think it is unlikely that these
undergraduates know much about the underlying causal principles that govern the
domains of economics, meteorology, and sociology (or that they conceived of these
systems via analogy as biological), it seems that the only possibility is that they as-
sumed that features were causally linked even without knowing what the mecha-
nisms might be. Indeed, when combined with those of the current article, these
additional findings mean that a nonindependence effect has been found in nine novel
categories drawn from six distinct domains, a result which provides strong evidence
for the claim that the assumption of underlying mechanism holds across at least a
wide range of category types.

Still, additional research will be required to determine whether the nonindepen-
dence effect and the assumption of underlying mechanism hold for the full panoply
of category types that have been investigated, including social categories (Fiske,
1998), scripts (Schank & Abelson, 1977), mental events (Rips & Conrad, 1998), ad
hoc or goal-based categories (Barsalou, 1983), and relational categories (Gentner,
1981). Our prediction is that the nonindependence effect is likely to hold for catego-
ries that exhibit a family resemblance structure in which category members tend to
be very similar on the basis of shared features (social categories, scripts, mental
events, etc.) because this structure may serve as a cue that invokes the assumption
of underlying mechanism. On the other hand, it is less clear how this assumption ap-
plies to ad hoc and relational categories whose members are usually quite dissimilar
(e.g., members of the goal-based category ‘‘things to take out of the house in case of
a fire,’’ such as babies and family photographs). An underlying mechanism that leads
one to infer characteristic features from other characteristic features is less applicable
to a category with no (or few) characteristic features.

7.4. Acquiring knowledge of underlying mechanisms

Another important question concerns how the Underlying Mechanism Model is
acquired in the first place. One possibility is that it is learned through experience.
For example, we have already suggested that people�s representation of biological
kinds, artifacts, and nonliving natural kinds may include specific beliefs about the
underlying mechanisms that bring rise to the features of such kinds. These beliefs
may originate with first-hand experience with categories of these types, and/or
through formal instruction. Then, noting the prevalence of underlying mechanism
associated with different kinds of categories, people may generalize that all (or at
least many) types of categories possess underlying mechanisms. Alternatively, or
in addition, people may observe the presence of within-category correlations for
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many categories, and then generalize this expectation to most new categories. Either
way, the result is a nonindependence effect for many categories that people
encounter.

Another possibility, of course, is that these generalizations may not be learned but
rather may have been programmed into the human cognitive architecture by evolu-
tion. Consistent with this idea is research showing that even young children have be-
liefs regarding the underlying mechanisms associated with kinds—at least for some
types of categories. For example, three-year-olds will attribute the autonomous
movement of animals to something intrinsic to the animal itself (Gelman & Gott-
fried, 1996). Similarly, Inagaki and Hatano (1993) have found evidence that young
children are vitalists who assume that biological kinds possess some sort of vital
force or energy. But whereas this research emphasizes the special beliefs associated
with living kinds, our findings suggest that, at least for adults, a belief in underlying
mechanism (or an expectation of within-category correlations) holds for many kinds
in addition to biological organisms (i.e., artifacts, nonliving natural kinds, econo-
mies, weather systems, and so on). Our own guess is that children would exhibit a
nonindependence effect every bit as domain-general as adults, but additional re-
search will be required to confirm this suspicion.

A final issue concerns how a schematic or skeletal representation of underlying
mechanism might interact with new knowledge that a person acquires (e.g., through
formal education) about a particular kind�s underlying mechanism. On the one hand,
the new knowledge might be simply added to the learner�s existing causal model for
the category, leaving the original schematic representation in place. Another possi-
bility is that, because the schematic representation functions as a kind of ‘‘mecha-
nism placeholder’’ (Ahn, Kalish, Medin, & Gelman, 1995), it gets ‘‘filled in’’ or
replaced by the new knowledge. This latter possibility predicts, for example, the ab-
sence of a nonindependence effect when reasoners possess a wealth of knowledge of
underlying mechanisms, and knowledge of the state of those mechanisms for a par-
ticular inference problem.

7.5. Relationship to psychological essentialism

Our claim that people assume the presence of underlying mechanism in categories
is related to the view known as psychological essentialism (Gelman, 2003; Medin &
Ortony, 1989). According to essentialism, people view categories as being organized
around underlying properties (essences) that are shared by all category members and
by members of no other categories. Like our Underlying Mechanism Model, essen-
tialism invokes underlying causes or mechanisms responsible for generating observa-
ble features. And like that model, it also claims that people often have little specific
knowledge about the nature of the essence or the means by which it produces ob-
served features (possessing instead an ‘‘essence placeholder’’).

The important difference between the two theories is that they explain different
kinds of uniformity and variation. Essences give a reasoner a way of understanding
why members of a category differ from members of other categories. That is, essen-
tialism explains between-category variation. Because an essence is understood to be
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present and absolute in all members, essentialism does not predict or explain sys-
tematic within-category variation in observable features. Underlying mechanisms,
in contrast, are understood to vary in well-functioningness among category mem-
bers, and the model therefore predicts within-category clustering of observable
features.

We summarize the complementary relation we envision between the two theories
with the causal network presented in Fig. 17. In this network, the essence node is a
binary variable that encodes an object�s status as a category member. This binary
representation captures the key intuition behind essentialism that category member-
ship is all-or-none. The mechanism node, in contrast, is the pathway by which the
essence causes the observable features. It is a continuous variable which represents
how well the underlying mechanisms associated with that category are, or have
been, functioning for the current object. This structure—which we claim is the de-
fault causal structure that gets superimposed on people�s mental representation of
most categories—has complementary implications for observable features. The es-
sence, absolute in all category members, produces within-category uniformity by en-
abling the causal mechanisms associated with a particular category. By functioning
either well or poorly, those causal mechanisms, in turn, produce within-category
variability in the form of within-category feature clustering—and the nonindepen-
dence effect.

Since Rosch it has been generally accepted that the features of objects appear in
clusters which reflect the underlying causal regularities that govern the world. We be-
lieve, however, that causal regularities generate more observable structure than just
feature clusters. Because the causal histories of members of a kind operate more or
less successfully the features of that cluster will be correlated with one another within
the cluster. And, one way or another—either through explicit causal reasoning or an
expectation of within-category correlations, either with innately provided knowledge
structures or ones acquired through experience—people have internalized this fact,
using characteristic features as a sign that still more characteristic features are
present.
Fig. 17. Integrating psychological essentialism and the underlying-mechanism model.
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7.6. Relationship to causal reasoning

Although the present experiments have investigated how people reason with cau-
sal knowledge in the context of categories, this leaves open the question of how peo-
ple reason causally more generally, that is, with variables that are not construed as
features of categories. On the one hand, the assumption of an underlying mecha-
nism, like the assumption of an essence, seems more reasonable for members of a
natural category—which often do share deep, internal similarities—than for in-
stances of other kinds of causal networks. On the other hand, it is at least conceiv-
able that the nonindependence effect (and, by hypothesis, the assumption of an
unobserved common cause like an underlying mechanism) is characteristic of reason-
ing about any set of variables related in a causal network (e.g., see Cartwright, 1993,
for arguments related to this idea; and Hausman & Woodward, 1999, for a re-
sponse). This is, of course, an empirical question.

Still, there is reason to think that category-ness is important to the nonindepen-
dence effect. One important piece of evidence is the fact that features were predictive
of one another in the control condition of each of our five experiments, despite the
fact those features were not described as causally related. That is, the nonindepen-
dence effect is induced by mere knowledge that variables are features of a category.
Moreover, the magnitude of violations of screening off in, say, Experiment 1 was no
greater when features were related in a common cause network than when they were
unrelated (i.e., in the control condition, see Fig. 3), suggesting that, as predicted by
the Underlying Mechanism Model, membership in an explicit causal network does
not make an additional contribution to feature nonindependence above and beyond
that which obtains for unrelated category features.

7.7. Relationship to causal-based categorization

As discussed earlier, in addition to feature inferences, the Bayes� net approach has
also been successfully applied to how people make classification decisions in light of
causal knowledge about categories. Rehder (2003a, 2003b) has proposed that people
judge category membership on the basis of whether the particular combination of fea-
tures displayed by an object was likely to have been generated by the category�s causal
model. This account has been shown to explain why categorizers are sensitive to inter-
feature consistency (e.g., cause and effect features both present or both absent), and
also to features that have many causes (i.e., a common effect in a common effect net-
work) because such features are especially likely to have been generated. Moreover, as
in the current research, to provide a full explanation of the categorization results, it
was assumed that participants augmented the category�s causal model with an
assumption of underlying mechanism. For example, to account for the causal status
effect in which features that occur earlier in a causal network have more influence on
categorization decisions (Ahn, 1998; Ahn et al., 2000), Rehder (2003b) assumed that
root features (i.e., those for which no explicit causes are provided) were generated by
the category�s underlying mechanism. However, this assumption is somewhat differ-
ent from the one embodied in the Underlying Mechanism Model which assumes that
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all (not just root) features are causally related to the underlying mechanism. One way
to resolve this discrepancy would be to assume that nonroot features are less strongly
related to the underlying mechanism, just because an explicit cause has been provided
for them, a proposal which would provide a uniform explanation for a wide range of
judgments of both categorization and feature inference.

7.8. Relationship to category-based property induction

Finally, considerations of underlying causal mechanism have also become
important in research on category-based property induction. On the one hand, re-
search has shown that the extent to which a new property is projected to a cate-
gory depends on the causal mechanisms thought to have produced that
property. For example, Proffitt, Coley, and Medin (2000) found that tree experts
generalized diseases on the basis of their knowledge of the mechanisms by which
diseases can be transmitted among trees (also see Lassaline, 1996). That is, as in
our experiments, causal knowledge is used powerfully when available. In the ab-
sence of causal knowledge, however, a typicality effect is found in which more typ-
ical category members like robins support stronger generalizations about birds
than do atypical members like ostriches (Osherson, Smith, Wilkie, López, & Shafir,
1990; Rips, 1975; Sloman, 1993). We think that this effect, like our nonindepen-
dence effect, can be understood in terms of causal reasoning with underlying causal
mechanisms. We suggest that reasoners prefer more typical premises (robins) be-
cause they are assumed to manifest the underlying causal mechanisms that are
characteristic of the category (birds). Once a novel feature is attributed to a cate-
gory�s normal causal mechanisms, it is judged likely to be present in all category
members.
8. Conclusion

Our research has established two facts regarding how people infer unobserved
features of category members. The first of these is that feature inference is
strongly influenced by the presence of explicit interfeature causal knowledge.
Our results show that this influence reflects the asymmetry of causal relationships,
and is consistent with a normative view of causal reasoning as defined by Bayes�
nets.

The second finding is of a nonindependence effect in which the presence of char-
acteristic features implies the presence of other characteristic features. We have ar-
gued that this effect arises because people take characteristic features as diagnostic
of the normal operation of underlying causal mechanisms. As a result, when a cat-
egory member is discrepant in its observed features, that discrepancy is taken as a
sign that something has gone awry with that exemplar�s normal mechanisms and
hence is likely to possess uncharacteristic features. We suggest that the domain-gen-
eral assumption of causal mechanisms is critical to understanding not only how peo-
ple infer features, but also their categorization decisions, their propensity to
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generalize new properties, and, we suspect, their performance in a wide variety of
category-related tasks.
Appendix A. Materials

Description of the cover story, attributes, attribute values, causal relationships,
and blank properties for each of the six categories is presented below.

A.1. Kehoe Ants

On the volcanic island of Kehoe, in the western Pacific Ocean near Guam, there is
a species of ant called Kehoe Ants. For food, Kehoe Ants consume vegetation rich in
iron and sulfur.

A.1.1. Features

(F1) Some Kehoe Ants have blood that is very high in iron sulfate. Others have
blood that has low levels of iron sulfate.

(F2) Some Kehoe Ants have an immune system that is hyperactive. Others have a
suppressed immune system.

(F3) Some Kehoe Ants have blood that is very thick. Others have blood that is
very thin.

(F4) Kehoe Ants build their nests by secreting a sticky fluid that then hardens. Some
Kehoe Ants are able to build their nests quickly. Others build their nests slowly.

A.1.2. Causal relationships

(F1 fi F2). Blood high in iron sulfate causes a hyperactive immune system. The
iron sulfate molecules are detected as foreign by the immune system, and the immune
system is highly active as a result.

(F1 fi F3). Blood high in iron sulfate causes thick blood. Iron sulfate provides the
extra iron that the ant uses to produce extra red blood cells. The extra red blood cells
thicken the blood.

(F1 fi F4). Blood high in iron sulfate causes faster nest building. The iron sulfate
stimulates the enzymes responsible for manufacturing the nest-building secretions,
and an ant can build its nest faster with more secretions.

(F2 fi F3). A hyperactive immune system causes thick blood. A hyperactive im-
mune system produces a large number of white blood cells, which results in the blood
being thicker.

(F2 fi F4). A hyperactive immune system causes faster nest building. The ants elim-
inate toxins through the secretion of the nest-building fluid.A hyperactive immune sys-
tem accelerates the production of nest-building secretions in order to eliminate toxins.

(F3 fi F4). Thick blood causes faster nest building. The secreted fluid is manufac-
tured from the ant�s blood, and thicker blood means thicker secretions. Thicker
secretions mean that each new section of the nest can be built with fewer application
of the fluid, increasing the overall rate of nest building.
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A.2. Lake Victoria Shrimp

Lake Victoria Shrimp are found in Lake Victoria, Africa. The concentration of
algae that are rich in choline is unusually high in some parts of Lake Victoria.

A.2.1. Features

(F1) Lake Victoria Shrimp use acetylcholine (ACh) as a brain neurotransmitter.
Some Lake Victoria Shrimp have an unusually high amount of ACh. Others have a
unusually low amount of ACh.

(F2) Lake Victoria Shrimp have an a ‘‘flight’’ response in which they flee from po-
tential predators. The flight response consists of an electrical signal sent to the mus-
cles which propel the shrimp away from a predator. Some Lake Victoria Shrimp
have a flight response which is long-lasting. Others have a short flight response.

(F3) Some Lake Victoria Shrimp have an accelerated sleep cycle (4 hours sleep,
4 hours awake). Others have a decelerated sleep cycle (12 hours sleep, 12 hours
awake).

(F4) Some Lake Victoria Shrimp have high body weight. Others have a low body
weight.

A.2.2. Causal relationships

(F1 fi F2). A high quantity of ACh neurotransmitter causes a long-lasting flight
response. The duration of the electrical signal to the muscles is longer because of
the excess amount of neurotransmitter.

(F1 fi F3). A high quantity of ACh neurotransmitter causes an accelerated sleep
cycle. The neurotransmitter speeds up all neural activity, including the internal
‘‘clock’’ which puts the shrimp to sleep on a regular cycle.

(F1 fi F4). A high quantity of ACh neurotransmitter causes a high body weight.
The neurotransmitter stimulates greater feeding behavior, which results in more food
ingestion and more body weight.

(F2 fi F3). A long-lasting flight response causes an accelerated sleep cycle. The
long-lasting flight response causes the muscles to be fatigued, and this fatigue triggers
the shrimp�s sleep center.

(F2 fi F4). A long-lasting flight response causes a high body weight. The shrimp are
propelled over a greater area of the lake, and find more new food sources as a result.

(F3 fi F4). An accelerated sleep cycle causes a high body weight. Shrimp habitu-
ally feed after waking, and shrimp on an accelerated sleep cycle wake three times a
day instead of once.

A.3. Myastars

In certain parts of the known universe there exists a large number of stars called
Myastars. Myastars are formed from clouds of helium.
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A.3.1. Features

(F1) Some Myastars are constructed from ionized helium. Others are constructed
from normal helium.

(F2) Some Myastars are very hot. Others have a low temperature.
(F3) Some Myastars are extremely dense. Others have low density.
(F4) Some Myastars have a large number of planets. Others have a small number

of planets.

A.3.2. Causal relationships

(F1 fi F2). Ionized helium causes the star to be very hot. Ionized helium partici-
pates in nuclear reactions that release more energy than the nuclear reactions of nor-
mal hydrogen-based stars, and the star is hotter as a result.

(F1 fi F3). Ionized helium causes the star to have high density. Ionized helium is
stripped of electrons, and helium nuclei without surrounding electrons can be packed
together more tightly.

(F1 fi F4). Ionized helium causes the star to have a large number of planets. Be-
cause helium is a heavier element than hydrogen, a star based on helium produces a
greater quantity of the heavier elements necessary for planet formation (e.g., carbon,
iron) than one based on hydrogen.

(F2 fi F3). A hot temperature causes the star to have high density. At unusually
high temperatures heavy elements (such as uranium and plutonium) become ionized
(lose their electrons), and the resulting free electrons and nuclei can be packed to-
gether more tightly.

(F2 fi F4). A hot temperature causes the star to have a large number of planets.
The heat provides the extra energy required for planets to coalesce from the gas in
orbit around the star.

(F3 fi F4). High density causes the star to have a large number of planets. He-
lium, which cannot be compressed into a small area, is spun off the star, and serves
as the raw material for many planets.

A.4. Meteoric sodium carbonate

A special form of sodium carbonate (Na2CO2) is found in meteors that land on
earth. Molecules of ‘‘meteoric’’ sodium carbonate differ from molecules of normal
sodium carbonate that are found on earth in that they have been exposed to intense
X-rays in space.

A.4.1. Features

(F1) Some meteoric sodium carbonate molecules are radioactive, i.e., theta parti-
cles get emitted from the nuclei of the sodium (Na) atoms. Other meteoric sodium
carbonate molecules are nonradioactive.

(F2) Some molecules of meteoric sodium carbonate have their five atoms arranged
in an eight-bond pyramid (four atoms at the base of the pyramid, and one at the
‘‘peak’’). Other molecules of meteoric sodium carbonate have their five atoms ar-
ranged in a normal five-bond ring, as in normal sodium carbonate found on earth.
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(F3) Some molecules of meteoric sodium carbonate are positively charged. Others
have a negative charge.

(F4) Some molecules of meteoric sodium carbonate are very reactive (tend to enter
into chemical reactions). Others have a low level of reactivity.

A.4.2. Causal relationships

(F1 fi F2). Radioactivity causes the molecule to take on a pyramid structure. The-
ta particles provide the extra energy required to form the additional atom-to-atom
bonds required for the pyramid.

(F1 fi F3). Radioactivity causes the molecule to have a positive charge. Theta par-
ticles are negatively charged, and so leave the molecule with a positive charge after
they are emitted.

(F2 fi F3). The pyramid structure causes the molecule to have a positive charge.
Atoms are packed close together in the pyramid structure, and so are able to share
electrons. Because they can be shared, the molecule has fewer negatively charged
electrons, and hence the molecule has an overall positive charge.

(F1 fi F4). Radioactivity causes the molecule to be reactive. Theta particles break
up surrounding molecules and hence accelerate the natural rate of chemical reactions.

(F2 fi F4). The pyramid structure causes the molecule to be reactive. Once one
atom of the pyramid is involved in a chemical reaction, the remaining atoms break
apart, providing the raw material for further reactions.

(F3 fi F4). Having a positive charge causes the molecule to be reactive. The mol-
ecule attracts negatively charged subparts of other molecules, which breaks up the
other molecules, and causes chemical reactions.

A.5. Romanian Rogos

The Romanian Motor Company, located in Bucharest, Romania, manufactures
an automobile called a Rogo which is designed to run on fuel refined locally in
Romania. Depending on where it is refined, the fuel may or may not have butane
(C4H10), a naturally occurring hydrocarbon, blended in with the gasoline.

A.5.1. Features

(F1) Some Rogos are filled with gasoline laden with butane. Other Rogos are filled
with gasoline with no butane.

(F2) The fuel filters of Rogos have gaskets. Some Rogos have fuel filter gaskets
that are extra loose. Other have tight fuel filter gaskets.

(F3) Some Rogos have a hot engine temperature. Others have a low engine
temperature.

(F4) Some Rogos have a high amount of carbon monoxide in their exhaust. Oth-
ers have a low amount of carbon monoxide in their exhaust.

A.5.2. Causal relationships

(F1 fi F2). Butane-laden fuel causes loose fuel filter gaskets. The butane tends to
corrode the rubber out of which gaskets are made, and so the gaskets do not fit tightly.
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(F1 fi F3). Butane-laden fuel causes hot engine temperature. The butane in the
fuel burns at a hotter temperature than normal gasoline.

(F1 fi F4). Butane-laden fuel causes high amounts of carbon monoxide in the ex-
haust. Butane contains more carbon than normal gasoline, and so more carbon is
available to bind with oxygen to form carbon monoxide.

(F2 fi F3). A loose fuel filter gasket causes hot engine temperature. Loose gaskets
allow more air to be mixed in with the fuel, meaning that the gas is more fully
burned, resulting in the engine running hotter than normal.

(F2 fi F4). A loose fuel filter gasket causes high amounts of carbon monoxide in
the exhaust. Loose fuel filters allow more air into the gas–air mixture, providing the
oxygen which binds with carbon to form carbon monoxide.

(F3 fi F4). Hot engine temperature causes high amounts of carbon monoxide in
the exhaust. The heat provides the energy required for the carbon to bind with the
oxygen.

A.6. Neptune Military Personal Computers

The power supplies for the Neptune Military Personal Computers are made from
tungsten mined in southern Utah, some samples of which are magnetic.

A.6.1. Features
(F1) Some Neptune Personal Computers have a power supply that is magnetic

and extends a magnetic field. Others have a normal nonmagnetic power supply that
extends no magnetic field.

(F2) Neptune Personal Computers have an internal clock based on a crystal oscil-
lator that determines how fast the computer runs. Some Neptune Personal Comput-
ers have a clock speed that is too fast. Others have a slow clock speed.

(F3) Some Neptune Personal Computers run at an unusually high temperature.
Others run at a low temperature.

(F4) Some Neptune Personal Computers have a screen image that is unusually
bright. Other have a screen image that is unusually dim.

A.6.2. Causal relationships

(F1 fi F2). Magnetic power supplies cause the computer to have a fast clock
speed. The magnetic field interferes with the natural phase transitions of the crystal
oscillator, the result being that the crystal oscillator emits square waves at a faster
rate.

(F1 fi F3). Magnetic power supplies cause the computer to run at a hot temper-
ature. The magnetic field influences the copper atoms in electrical wire to orient
themselves perpendicularly to the flow of electricity, increasing the resistance, and
resulting in more heat being generated.

(F1 fi F4). Magnetic power supplies cause the computer to display a bright im-
age. The magnetic field concentrates the electron beam which strikes the phos-
phor on the computer screen, leading to an image that is slightly smaller but
brighter.
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(F2 fi F3). A fast clock speed causes the computer to run at a hot temperature.
With a faster clock speed the computer runs faster, performs more operations,
and generates more heat as a result.

(F2 fi F4). A fast clock speed causes the computer to display a bright image. The
clock controls how fast the image is ‘‘repainted’’ on the screen. A faster clock means
that the phosphors on the screen�s surface are being irradiated with electrons more
often, leading to a brighter image.

(F3 fi F4). Hot temperature causes the computer to display a bright image. Heat
increases the efficiency of the cathode ray tube, leading to a more energized electron
beam and a brighter screen.
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