Noun/Verb Entropy: an MEG Study of Word-level Syntactic Category Ambiguity

Joseph King¹, Tal Linzen², & Alec Marantz¹,²,³
¹NYUAD Institute, NYU Abu Dhabi; ²Department of Linguistics, NYU; ³Department of Psychology, NYU

Introduction

• How are grammatical categories such as noun and verb computed during word recognition? At least two options (for review, see: Vigliocco et al. 2011):

 1. **Lexical**: category is a feature of the representation of each word, with distinct representations for each category

 2. **Combinatoric**: lexical category is assigned to a category-neutral root via affixation

• Lexical category as a feature of distinct words predicts category ambiguity correlations with 300ms MTL (middle temporal lobe) activity (see: e.g., meaning entropy effects for distinct meanings in Simon et al. 2012)

• Lexical category as a product of combinatoric processes predicts earlier (before 300ms) LATL (left anterior temporal lobe) activity correlated with category ambiguity (see: verb subcategorization frame effect in Linzen et al. 2013 and cf. Bemis & Pylkkänen 2013)

• Does the brain response to category ambiguity of null-inflected words support (1) or (2)?

1 For linguistic support of (2), see: Barber & Bale (2002). Chomsky (to appear), Marantz (1997)

Stimuli Variables

<table>
<thead>
<tr>
<th>Lexical Variables</th>
<th>Combinatoric Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivational entropy</td>
<td>Noun/Verb entropy</td>
</tr>
<tr>
<td>hammer... → -able 0.6</td>
<td>hammer... → -ØV 0.33</td>
</tr>
<tr>
<td>hammer... → -er 0.2</td>
<td>hammer... → -ØN 0.67</td>
</tr>
<tr>
<td>hammer... → -ize 0.2</td>
<td>Inflectional entropy</td>
</tr>
<tr>
<td>Number of senses (polysenes):</td>
<td>hammer... → -s 0.3</td>
</tr>
<tr>
<td>power hammer → mallet</td>
<td>hammer... → -ing 0.3</td>
</tr>
<tr>
<td>cock hammer → pounding hammering</td>
<td>hammer... → -ed 0.4</td>
</tr>
<tr>
<td>Number of distinct meanings (homographs):</td>
<td>Example N/V entropy</td>
</tr>
<tr>
<td>bank (institution or river)</td>
<td>words >0.67</td>
</tr>
<tr>
<td>bat (animal or sports object)</td>
<td></td>
</tr>
<tr>
<td>row (line or paddle)</td>
<td>joke, heat, blur</td>
</tr>
<tr>
<td>Noun/Verb entropy is given by:</td>
<td></td>
</tr>
<tr>
<td>$H_{\text{noun/verb}} = -P_{\text{verb}} \log P_{\text{verb}} - P_{\text{noun}} \log P_{\text{noun}}$</td>
<td></td>
</tr>
</tbody>
</table>

Materials & Methods

• Visual lexical decision experiment with concurrent MEG recording

• 12 right-handed native English speakers

• 208 sensor array

• Source solutions calculated with MNE (Gramfort et al. 2014)

• 313 words

• Effects of predictors were assessed using continuous linear mixed effects regression on single trial source activity

Results

Correlations between neural activity and N/V entropy (uncorrected t-maps @ ~200ms)

- Noun/Verb entropy
- Derivational entropy
- Number of senses
- Inflectional entropy

Behavioral Results (RT)

- Word frequency
- Derivational entropy
- Noun/Verb entropy
- Number of senses
- Inflectional entropy
- Number of meanings

Conclusions

• No significant correlations were observed with number of senses or with inflectional entropy; however, stimuli were not selected optimally for observing the effects of these variables

• Number of meanings and derivational entropy correlate with activity in a broader temporal region and a later time window (~300-350ms), replicating experiments that associate these variables with lexical access

• As predicted by the combinatoric hypothesis, N/V entropy correlates with activity in the LATL (left anterior temporal lobe) within the ~200-250ms time window, parallel to the effects of subcategorization frame entropy for verbs when presented in isolation (Linzen et al. 2013)

This work is supported by the NYU Abu Dhabi Research Council under grant G1001 from the NYUAD Institute, New York University Abu Dhabi.