MEG masked priming evidence for early form-based decomposition of irregular past tense verbs

Joseph Fruchter¹, Linnaea Stockall², and Alec Marantz¹
New York University¹, Queen Mary University of London²

Introduction

Past Tense Debate
1. Dual Mechanism Theory: regular verbs generated by rule, irregulars memorized and stored as whole forms in the lexicon. (Pinker & Prince, 1988)
2. Single Mechanism Theory: both regulars and irregulars generated by rule from stem and affix, with phonological readjustment of stem as necessary. (Stockall & Marantz, 2006)

Masked Morphological Priming
Behavioral evidence for form-based decomposition from masked priming with genuinely affixed words (teacher-TEACH) and pseudo-affixed words (corner-CORN), but not orthographic controls (brothel-BROTHER; Rastle, Davis, & New, 2004).

Similar results for irregularly inflected items (fell-FALL), but not pseudo-irregulars (fell-BALL; Crepaldi et al., 2010).

MEG/EEG Studies of Visual Word Recognition
MEG studies of single word reading show effects of transition probability from stem to affix on the M170 evoked response (Solomyak & Marantz, 2010). Here, following up on previous EEG and MEG studies showing masked priming effects (Morris & Stockall, in press; Lehtonen, Monahan, & Poeppel, 2011), we ask whether we can find early effects of masked morphological priming (i.e. during the time window of the M170), even for irregularly inflected past tense verbs.

MEG/EEG Studies of Visual Word Recognition
MEG studies of single word reading show effects of transition probability from stem to affix on the M170 evoked response. Here, following up on previous EEG and MEG studies showing masked priming effects (Morris & Stockall, in press; Lehtonen, Monahan, & Poeppel, 2011), we ask whether we can find early effects of masked morphological priming (i.e. during the time window of the M170), even for irregularly inflected past tense verbs.

Experimental Procedure
• 200 real word targets, preceded by related and unrelated primes; the two types of primes are matched for word length, frequency, and orthographic neighbors.
• 200 non-word targets, preceded by real word primes (related and unrelated);
• non-words matched for length and orthographic neighbors with real word targets.

Stimuli
<table>
<thead>
<tr>
<th>Identity</th>
<th>Unrelated Prime</th>
<th>Related Prime</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>rub</td>
<td>rushed</td>
<td>RUSH</td>
</tr>
<tr>
<td>Irregular</td>
<td>cab</td>
<td>dug</td>
<td>DIG</td>
</tr>
<tr>
<td>Pseudo-irregular</td>
<td>cab</td>
<td>rug</td>
<td>RIG</td>
</tr>
</tbody>
</table>

MEG Experiment:
• Right-handed native English speakers (n=16) completed a visual masked priming lexical decision task (word vs. non-word) consisting of 400 trials.
• MEG data was acquired continuously during the task.
• Structural MRIs were analyzed via FreeSurfer.
• Cortically-constrained inverse solutions were computed via MNE

Priming Analysis via Fusiform/IT Functional ROI
• Functional region of interest (ROI) was defined based on the peak priming effect for Identity + Regular conditions, within the left fusiform and inferior temporal (IT) ROIs.
• For the priming analysis, linear mixed effects models were employed millisecond-by-millisecond with the average activity within the ROI (for each trial) as the dependent variable, PrimeType (related vs. unrelated) as the fixed effect, and subject and item as random effects.

MEG Results

Irregular Priming Effects in Left Fusiform/IT Functional ROI

<table>
<thead>
<tr>
<th>ROI / Hypothesized time window</th>
<th>Significance of effect¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular (Identity + Regular)</td>
<td>p = 0.044 for the cluster at 174-183 ms.</td>
</tr>
<tr>
<td>Pseudo-irregular (Identity + Regular)</td>
<td>No effect.</td>
</tr>
</tbody>
</table>

*Significance calculated via 10,000 iterations of permutation tests, based on multiple comparisons correction algorithm in Maris & Oostenveld (2007), as adapted by Solomyak & Marantz (2010)."