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Abstract

Bayesian decision theory (BDT) is a mathematical framework that allows the experimenter to model ideal
performance in a wide variety of visuomotor tasks. The experimenter can use BDT to compute benchmarks for ideal
performance in such tasks and compare human performance to ideal. Recently, researchers have asked whether
BDT can also be treated as a process model of visuomotor processing. It is unclear what sorts of experiments are
appropriate to testing such claims and whether such claims are even meaningful. Any such claim presupposes

that observers’ performance is close to ideal, and typical experimental tests involve comparison of human performance to
ideal. We argue that this experimental criterion, while necessary, is weak. We illustrate how to achieve near-optimal
performance in combining perceptual cues with a process model bearing little resemblance to BDT. We then

propose experimental criteria termed transfer criteria that constitute more powerful tests of BDT as a model of perception
and action. We describe how recent work in motor control can be viewed as tests of transfer properties of BDT. The
transfer properties discussed here comprise the beginning of an operationalization (Bridgman, 1927) of what it means to
claim that perception is or is not Bayesian inference (Knill & Richards, 1996). They are particularly relevant to
research concerning natural scenes since they assess the ability of the organism to rapidly adapt to novel tasks in familiar
environments or carry out familiar tasks in novel environments without learning.
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Introduction

Bayesian decision theory (BDT; Blackwell & Girshick, 1954) is
a mathematical theory of decision making based on game theory
(von Neumann & Morgenstern, 1944/1953) that has proven to be
a powerful tool in mathematical statistics (Ferguson, 1967; Berger,
1985; O’Hagan, 1994; Gelman et al., 2003; Jaynes, 2003). It also
serves as a useful framework for developing models of biological
perceptual processing (Knill & Richards, 1996; Maloney, 2002;
Mamassian et al., 2002), in part because its mathematical structure
is evocative of the ordinary “perceptual cycle” (Neisser, 1976).

The elements of BDT

The elements of BDT are summarized in Fig. 1 as three sets and four
functions. The three sets are W, the states of the world; X, possible
sensory states; and A, possible actions. On every “turn,” the world is in
some specific state, w € W, unknown to the organism. The organism
is given access to a sensory state, x € X, and must decide what action,
a € A, to select.
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There are four functions that serve to complete the description
of the BDT task. Typically, the first is the prior m(w), the pro-
bability density' that any particular state of the world is the current
state. The second is the likelihood function p(x|w), the probability
density of sensory states which as written depends on the state of
the world. This function is typically written as L(w|x)=p(x|w) to
emphasize that it provides information about possible states of the
world given a particular sensory state x. Remarkably, it can be
shown that the likelihood function captures all of the sensory
information relevant to the state of the world (Berger & Wolpert,
1988; Maloney, 2002), a result known as the likelihood principle.

The third function is the gain function G(a,w) that determines
the gain or loss experienced by the organism on a particular trial.
It is also referred to as loss function or value function in the liter-
ature. We use the term gain function with the understanding that
losses are coded as negative gains. The last function is the decision
function @ = 6(x) that captures the strategy of a particular BDT
observer. Given a sensory state (the only novel information available

'If the states of the world are finite, discrete, then the probability density
function is replaced by the probability mass function specifying the pro-
bability of each possible state. In this article, we assume that all probability
information is in terms of densities. Maloney (2002) develops this same
description with the assumption that all three sets are finite, discrete.
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Fig. 1. (Color online) The elements of BDT. The three vertices correspond
to W, the possible states of the world; X, the possible sensory states; and A,
the available actions. The three edges correspond to the gain function
G(a,w), the likelihood function L(a|x), and the decision rule 6(x), where
x € X denotes a sensory state, a € A a particular action, and w € W
a particular state of the world. The last element is the prior distribution
m(w) on the possible states of the world.

on a particular trial), the observer selects an action. Each
possible decision function corresponds to a different possible
observer.

The Bayes observer, by definition, selects the action that
maximizes expected gain on any turn by choice of the decision rule:

é\/{a))?n—lezEG(‘s): / /G(5(X)7W)L(W|X)7r(w)dwdx. (1)

. —)

If it is not plausible that the organism has access to the prior in
a particular task, then BDT becomes statistical decision theory
(Maloney, 2002), and it is still possible to develop criteria for
selection of “good” actions. Here we confine attention to BDT.

In any application of BDT, the elements of BDT play roles that
are fairly obvious. The prior captures the statistical structure of the
environment, the likelihood function characterizes the instantaneous
sensory information that is available, and the gain function specifies
the task at hand. The gain function, in particular, represents the
consequences to the organism of its actions, and there are as many
gain functions as there are natural tasks we might ask an organism
to undertake. In an experimental context, the gain function is
imposed by the experimenter, and in natural contexts, it is imposed
by the environment. The gain function links the organism to
objective possibilities of reward and punishment in any particular
context. It is typically not under the control of the organism.

One way to organize the Bayesian computation in eqn. (1) is to
first multiply prior and likelihood function to form a posterior
distribution that summarizes all the information available about the
likely distribution of the state of the world but which lacks any
information about possible costs and benefits associated with
specific actions (the gain function). As we present BDT, we assume
that selection of action depends on both this posterior and the gain
function. The information in this posterior is a summary of the
available information about the state of the world but divorced from
the demands of any specific task. Maloney (2002) speculated that
the visual representation of the scene could be identified with this
posterior but provided no clear way to test such a claim. The claim
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that there is a separate visual representation is an intriguing one, but
a skeptic might argue that such a claim has no evident consequences
for behavior and therefore is not empirically testable. We will not
consider this issue further.

Operationalizing perception as Bayesian inference

It is not obvious that any biological organism can solve eqn. (1) and
compute 6(x). Researchers have argued that biological organisms are
unable to compute eqn. (1) because of its computational complexity
and the knowledge presupposed (Shimojo & Nakayama, 1992).

However, applications of BDT in specific tasks can be rather
modest, and part of the opposition to BDT as a process model
of human visuomotor performance is typically terminological.
In particular applications of BDT, rather grandiose terms such as
“states of the world”’ can simply comprise the location in depth of
a visual target or just the presence or absence of such a target. In
particular applications of BDT, we will find that the solution is
sometimes very simple. Signal detection theory (Green & Swets,
1966/1974) and its generalizations (Duda et al., 2000, Chapter 2)
are applications of BDT (Maloney, 2002) with remarkably simple
solutions. See Maloney (2002) for a discussion of the complexity of
Bayesian computation.

The terminology of BDT can be misleading in another sense.
Researchers familiar with the term prior, for example, may come
to think of it as a probability density function applied to events
outside the observer or that actions are simple binary decisions or at
most univariate estimates of depth, curvature, and so forth. We will
describe applications where a single action corresponds to selection
of motor plans of great complexity in neural terms and where the
prior uncertainty encodes the unavoidable uncertainty in the out-
come of speeded movements as well as perceptual uncertainty
(Trommershauser et al., 2008). While the sources of motor un-
certainty are endogenous, this uncertainty is beyond the control of
the organism and is better modeled as part of the states of the world.

The simplicity of the ideas underlying BDT does not imply
that the theory is only appropriate for trivial tasks. Conversely, the
apparent complexity of eqn. (1) need not exceed the computational
capacities of biological organisms.

Eqn. (1) specifies an ideal observer or actor where the sense in
which the observer is optimal is well defined: this Bayes’ observer
maximizes expected gain for whatever gain function is specified.
We can use eqn. (1) to determine the optimal performance in spe-
cific tasks and then compare human performance to this bench-
mark. Geisler (1989, p. 30) proposed using statistical models as
benchmarks in this way: “... the ideal discriminator measures all
the information available to the later stages of the visual system . . .
[M]easuring the information available . .. with a model of the sort
I have described here should be done as routinely as measuring the
luminance with a photometer. In other words, we should not use
only a light meter but we should also use the appropriate infor-
mation meter.” This benchmark approach is traceable to earlier
work by Barlow and colleagues (Barlow, 1972, 1995), and it has
proven to be a remarkably fruitful tool in the study of human
perception (see, e.g., Najemnik & Geisler, 2005).

Use of BDT as a benchmark model does not imply that human
visuomotor processing is in any sense Bayesian inference, even
when human performance is close to ideal. As we show in the next
section, it is possible to match the performance of the Bayes’
observer without computations that mimic eqn. (1).

Nevertheless, we can consider the hypothesis that “elements of
human visual processing can be described as elements of BDT” or
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that “‘perception is Bayesian inference,” but we are left with the
problem of deciding exactly what is meant by such claims and
how they can be tested. It is possible that such claims are meaning-
less and that the proper use of BDT should be limited to computing
benchmark ideal observers for visual tasks.

One evident difficulty is that the Bayesian ideal observer is an
idealization and it is implausible that any observer conforms
exactly to the ideal. BDT is a framework for developing models of
actual observers, and the resulting model is probably best thought
of as an idealization akin to the notion of a fair coin. In reality, no
coin is ever perfectly fair, but Feller (1968, p. 19) justifies the use
of such models: ““... we preserve the model not merely for its
logical simplicity, but essentially for its usefulness and applicabil-
ity. In many applications it is sufficiently accurate to describe
reality.”

However, even if we accept that Bayesian process models are
intended as idealized descriptions, we are still left with a basic
stumbling block. What does it mean to say that perception is
Bayesian inference? Is the claim meaningful? Empirically testable?

A physicist would recognize our problem as the problem of
operationalization: “. . . the proper definition of a concept is not in
terms of its properties but in terms of actual operations ....”
(Bridgman, 1927). In the 1960s, within psychology, the de-
velopment of criteria for testing whether human visual or cognitive
performance could be described by optimal models such as
expected utility theory was a focus of research (Krantz et al.,
1971). In this article, we propose methods for testing the claim that
perception is Bayesian inference that go beyond matching of
performance. Before describing these methods, we first consider
the benchmark criterion above. If the observer’s performance is
close to ideal or indistinguishable from ideal, what conclusions, if
any, can we draw about BDT as a process model for the observer?
As the following example demonstrates, very simple observers that
engage in little more than table-lookup can achieve levels of
performance that closely approximate ideal.

Optimal cue combination

Consider the visual task of estimating depth given two sources of
depth information or depth cues. The depth cues are random
variables X, X, whose distributions are assumed to be Gaussian
X;~®(d, 0?), i=1,2. The parameter d is unknown, and in terms of
BDT, the possible values of d correspond to states of the world. The
sensory state is the bivariate vector X = (X, X,), and the possible
actions, we will assume, are estimates of depth d. The variances of
the cues o2, i=1,2 are assumed to be known, and as a notation
choice, we can simply replace these variances by reliabilities
ri= 1/0?, i=1,2 (Backus & Banks, 1999). A reliability near
0 corresponds to a cue that contains little information about depth;
a large value of reliability corresponds to a “useful’” depth cue.
We make one last assumption about the sensory state, that the two
cue values are statistically independent (Landy et al., 1995; the
dependent case is treated in Orug et al., 2003). For convenience, we
assume that the prior is also Gaussian d ~ ®(dy, ro) where ro=1/ 0’%
is the reliability (Backus & Banks, 1999) of the prior. The prior has
fixed mean d and a reliability r, that corresponds to the weight
given to it in combining cues (below). To formulate cue combina-
tion in terms of BDT, we must specify a gain function, and the
typical choice in the cue combination literature is

G(d,d)= —(d—d). 2)
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The negative sign in eqn. (2) and eqn. (1) allows us to
minimizing quadratic loss by maximizing gain.

The solution to eqn. (1) is a decision function d=8(X;, X) that
is remarkably simple,

d=rnXi + »Xy + rody, (3)

where F7i=r;/(ro+r +r2), i=0,1,2. The cues (including the
prior cue) are weighted according to their reliability and combined
linearly (see Maloney, 2002; Orug et al., 2003, for details). There
are many reports of near-optimal performance in combining depth
cues such as Ernst and Banks (2002), consistent with the claim that
observers combine cues linearly with the choice of weights that
minimize quadratic loss.

However, any observer that can combine cues linearly and
somehow select the correct weights for the linear combination can
duplicate the performance of the Bayesian observer. One way to
compute these weights is to solve eqn. (1) with the functions and
distributions that characterize the cue combination problem.
However, a second possibility is that they can be learned through
experience and that the problem of cue combination can be solved
by simply learning the function d=6(X;, X, ). There is considerable
evidence that cue weights can be gradually learned. We will refer to
such a solution as a fable-lookup decision rule or table-lookup
observer.

Bayesian transfer

Table-lookup observers can approximate the performance of the
Bayesian observer very well, but it is difficult to argue that an
observer using a table-lookup decision rule is engaged in per-
ception as Bayesian inference. This highlights the problem of
testing perception as Bayesian inference by looking at measures of
performance alone: the conclusions we draw would be similar in
spirit to declaring that anyone who speaks French well must be
French.

We propose additional tests of the claim that perception is
Bayesian inference that go beyond benchmark comparison and
that involve comparison of performance across multiple tasks to
evaluate whether observers can store information equivalent to
gain functions, likelihoods, and priors and combine them accord-
ing to eqn. (1). We are defining experimental criteria that allow us
to operationalize what it means to be able to encode and make use
of information corresponding to the elements of BDT.

Two thought experiments will illustrate the reasoning behind
these criteria. Imagine that an observer engages in a task that can
be described by BDT and, after considerable practice, gradually
reaches a level of performance close to ideal as dictated by eqn. (1).
The observer makes judgments consistent with a specific gain
function Gy(a,w), a specific likelihood L; (w|x), and a specific prior
m1(w) and receives immediate feedback in the form of rewards or
penalties dictated by the gain function. Such an observer may have
extracted and encoded representations of gain, likelihood, and prior
and used eqn. (1) to combine them on each trial—or he may have
developed a large lookup table mapping each sensory event x to the
action a dictated by eqn. (1). The apparently optimal performance
in the latter case can be credited to the power of reinforcement
learning.

But now, suppose that we change only the gain function in the
task to Gy(a,w) and ask the observer to continue in the now
modified task. The table-lookup observer must now relearn the
table ““from scratch,”” and we would expect that the performance of
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the table-lookup observer would only gradually improve over trials
in the new task with the novel gain function. But what if that is not
what occurs? What if we observe instead an immediate switch of
behavior from the choice of actions that maximized expected gain
with the old gain function to novel actions that maximize expected
gain under the new? If this occurs, the observer has evidently
transferred knowledge about the likelihood and prior from one task
to the other and has effectively combined this knowledge with
knowledge of the new gain function according to eqn. (1).

Of course, we need to be able to signal the change in gain
function to the observer, or it is unreasonable to expect transfer. In
the experiments described in the next section, observers accepted
symbolic specifications of altered gain functions and did show
transfer. But a lack of transfer may simply indicate a lack of
familiarity with the novel gain function. In Fig. 2, we schematize
a series of tasks that form a second thought experiment. In Task 1
and Task 2, the observer slowly or quickly learns to select actions
that come close to maximizing expected gain. The observer is now
familiar with all of the gain, likelihood, and loss functions
associated with both tasks but has not experienced them in all
possible combinations.

The table-lookup observer in such a thought experiment has
learned two tables. We can imagine an alternative observer that
has encoded all of the relevant functions. We now present this
observer with a novel task that combines the gain function of Task 2,
Ga(a,w)with the likelihood L;(w|x) and the prior m(w) of Task 1.
The table-lookup observer has little choice but to begin to learn
anew table. An observer that has access to separate representations
of gain, likelihood, and prior and can combine them according to
eqn. (1) could, however, work out actions that maximize expected
gain in the transfer task. This observer has thereby exhibited an
ability to separately encode multiple gains, likelihoods, and priors
and “mix and match” them to achieve near-ideal performance
without practice or learning. We will demonstrate that human
observers do have such transfer capabilities in the next section for
one particular class of motor tasks, and these results will help to
clarify what is implied in Fig. 2.

Task 1
G (aw)
L(wlx) E> 3 (x) Transfer Task (Gain)
optimal
/2 (W) 5, (a,w)
Task 2 L(w]|x) 5, (x)
G, (a,W) 7 (W) optimal?
L, (W | X) 0, (X)
7, (W) optimal

Fig. 2. (Color online) Bayesian transfer. An observer practices two BDT
tasks, Task 1 and Task 2, to criterion and comes close to maximizing
expected gain in both. In the transfer task, we test whether the observer can
transfer acquired knowledge about gain functions, likelihood, and priors. In
the example shown, the observer is given a new version of Task 1 but with
the gain function G(a,w) of Task 1 replaced by the gain function G,(a,w) of
Task 2. The observer is familiar with the gain function, likelihood, and prior
in the resulting transfer task, but the combination of gain, likelihood, and
prior is novel. Is the observer’s performance in the transfer task immediately
close to ideal without further practice or learning?
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There are obviously two other transfer criteria based on
substitution of prior and on substitution of likelihood function,
respectively. The former criterion, based on prior, is particularly
relevant to natural scene statistics applications where the prior
is a summary of statistical dependencies in the environment.
We illustrate what a prior transfer test might involve.

We cannot hope to test prior transfer if subjects cannot learn
new priors as might be the case if priors are either genetically
determined or learned very early in development. However, work
by Adams et al. (2004) shows that in visual processing of shape,
organisms can rapidly learn new priors on illuminant direction.
Consequently, it is possible to test prior transfer for two priors on
illuminant distribution by embedding subjects in virtual environ-
ments with different priors on illumination direction. In the first
scene with prior 71 (w), subjects carry out a specific task dictated by
gain function G(a,w). We could also vary likelihood, but it is not
necessary to do so. They learn this combination of task and prior
until their performance comes close to maximizing expected gain.
They then are placed into second virtual environment with
a different prior m,(w) on illuminant direction and a different task
specified by gain function G,(a,w). They learn this combination of
task and prior until their performance comes close to maximizing
expected gain. If they succeed in adapting to two different priors
with two different tasks, we can then test prior transfer by asking
them to carry out a task with gain function G;(a,w) and the
environment corresponding to prior m,(w) or vice versa. If subjects
can immediately maximize expected gain in this third task, they
pass the prior transfer test.

The last transfer criterion involves transfer when the likelihood
function is changed. The likelihood function is typically inter-
preted as the operating characteristic of the sensory apparatus, and
a test of transfer would in effect test whether the observer could
continue to perform optimally when sensory information is
degraded or enhanced. Intuitive examples involve losing one’s
glasses and attempting to carry out a task for which one has
always worn glasses or trying to play soccer at night for the first
time. We emphasize that the observer is not expected to carry out
tasks as well without glasses or at night but that the transfer
criterion contains the prediction that performance without glasses
or at night will immediately be close to maximizing expected gain
after the transfer.

Cues to context

In the discussion above, we considered how subjects might
perform in multiple tasks with objectively different priors, gain
functions, and likelihoods. We assume that, with every transition,
the subject is able to identify that he is confronted with a pre-
viously encountered gain function, prior, or likelihood, and in the
experiments discussed next, the subject is simply told about
changes in gain functions. The question as to how an organism
equipped with representations of multiple gain functions, priors, or
likelihoods might decide which choice of gain, prior, or likelihood
is appropriate is one we raise but do not further address. Our goal
here is to propose tests that could assess whether organism can in
fact save, restore, and combine representations of previously
encountered gains, priors, and likelihoods at all.

Movement under risk

The stimuli represented in Fig. 3A were used in a series of
experiments by Trommershduser and colleagues to test whether
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Fig. 3. (Color online) Six tests of transfer with a spatial gain function. (A) A
stimulus configuration such as the one shown appears on a computer screen
in front of the observer who was instructed to reach out and touch the screen
within 700 ms. The gain function is coded by colored circles whose position
and relative orientation change from trial to trial. A hit within the solid green
circle results in a gain of 2.5 cents, within the dashed red circle, and a loss of
12.5 cents. The observer moves rapidly and cannot completely control his
movement. Even if he aims at a particular point on the screen, the result is
a probability distribution of actual end points that induce probabilities of
hitting within each region. A possible aim point in marked by a white dot.
How much should the observer aim away from the dashed red circle to
maximize expected gain? (B) Actual choice of aim point (horizontal deviation
along the white line) plotted versus optimal choice of end point computed via
BDT. (C) Trial-by-trial deviation of movement end point (in the horizontal
direction), a function of trial number after introduction of rewards and
penalties for six different gain functions. The online version of this figure is in
color. Figure reproduced with permission from Trommershéuser et al. (2008).
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human observers can cope with arbitrary gain functions in a simple
visuomotor task. When the stimuli appeared on a computer touch
screen, the observer had 700 ms to reach out and touch the screen.
If the observer was late, he incurred a large monetary penalty
(Trommershauser et al., 2003a,b, 2008). Otherwise, the location of
the touch on the screen determined the observer’s reward or penalty.
These rewards and penalties were signaled by colored circles on the
screen. In Fig. 3, we draw red circles as dashed and green as solid,
so that they be readily differentiated in black and white versions of
the article. The stimuli are in color in the online version of the
article. Hitting within a red circle resulted in a penalty that varied
from condition to condition, and hitting within a green circle
resulted in a small reward. Touching outside both circles but within
the time limit resulted in neither reward nor penalty.

The observer could not completely control his speeded
movement, and a movement aimed at the center of the green
circle had a substantial probability of missing the green circle
altogether. This probability varied from observer to observer
depending on each observer’s intrinsic motor accuracy. The
location of the red circle with respect to the green varied from
trial to trial as did the degree of overlap of the circles. There were
a total of six experimental conditions each with a distinct gain
function but, in terms of BDT, with the same prior and the same
likelihood functions. There are two sources of prior uncertainty,
motor error and visual error in locating the target. Trommer-
shduser et al. (2008) derive a modified form of eqn. (1) that serves
as a BDT model for this task. In terms of BDT, the observer carries
out interleaved tasks with six different loss functions but the same
likelihood and prior.

Prior to the experimental session, however, the observer
practiced the movement by hitting identical stimuli where there
was a small reward associated with hitting within the green circle
(within the time limit) but no reward or penalty associated with
the red circle which was nevertheless always present. After several
hundred trials, observers learned to respond within the time window
of 700 ms, and their motor uncertainty had improved and stabilized.

In the main part of the experiment, the observer was effectively
asked to transfer from the gain function in training to each of the
six interleaved penalty conditions. The observer’s strategy may be
represented by choice of where to aim, and for any value of
penalty and relative position of red and green circles, the aim point
that maximized gain fell on the white line bisecting the two circles
in Fig. 3A. We can therefore compare observers’ performance by
plotting the mean end point of reaches in each condition to the aim
point that maximizes expected gain, and this is shown for all
observers in Fig. 3B. The observers’ performance shows no obvious
deviations or trends from that which would maximize expected
gain as predicted by BDT.

The purpose of the experiment of Trommershéiuser et al.
(2003a) was not to test a transfer property, but if we take into
account the gain function imposed in the training session, we find
that the design of the experiment was appropriate to test transfer to
novel gain functions. The observer had the opportunity to maximize
expected gain during training and did so. We would expect the same
good performance from a table-lookup observer who simply
learned to maximize gain by aiming at the center of the green
circle (all observers exhibited isotropic Gaussian motor error, and
aiming at the center of the green circle did maximize expected gain).

We can then examine observers’ performance on the first few
trials when exposed to the six interleaved experimental conditions
in the main part of the experiment and look for any evidence that
observers are adjusting aim point. The evidence for such adjustment
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would be trends in aim point, especially along the white line. In
Fig. 3C, we plot horizontal displacement of end points versus trials
where displacement is coded with respect to the mean horizontal
end point for each condition. The prediction of transfer is then that
these displacements will show no trends but will be instead
symmetrically distributed around zero (the asymptotic aim point),
as appears to be the case. We found no evidence of patterned trends
across the first few trials across subjects, and the correlation
between successive trials was not significantly different from zero.

The implication is that observers who have learned to aim the
center of targets in training are able to transfer their experience of
their own visuomotor error to novel conditions with gain functions
involving penalties. It is difficult to explain this performance
unless observers have spontaneously encoded information about
their own visuomotor performance during training and combined
this information with novel gain functions. In terms of Fig. 2, we
did not even need to employ a second task. Observers made use of
the symbolic encoding in terms of colored circles, again with no
prior experience of regions that incurred penalty.

More recent work has extended these basic results to analogous
experiments where the gain function is specified in the temporal
domain (Hudson et al., 2008). Observers attempted to hit small
targets on a computer screen (Fig. 4A), but no time limit was
imposed. In the experimental task, the observer saw a time line
specifying the reward or penalty associated with movements to
touch the target differing in duration (Fig. 4B). The rewards
associated with green temporal windows and the penalties associ-
ated with red temporal windows were coded in terms of points, and
the observers knew that they would receive a monetary reward at
the end of the experiment proportional to total points earned. In the
print version of this article, we represent penalty windows by red
vertical hatching and reward windows by green slanted hatching
(Fig. 4B). The stimuli are in color in the online version of the article.

As in Trommershéuser et al. (2003a), observers first completed
an extensive training session where they were challenged to
complete movements of specified durations to the target and given
extensive feedback specifying their actual movement times.

We can therefore examine how well observers transferred their
experience in training to the four experimental conditions each
with a different temporal penalty function. The summary of actual
versus optimal movement times across the four conditions and all
observers is shown in Fig. 4C. There were no obvious trends
consistent with learning in the transfer (Hudson et al., 2008).
Hudson et al. (2008, pp. 4-5) compared observed performance
across time to reinforcement learning models and found that such
models did not predict observed performance: “To investigate the
possibility that subjects used a hill-climbing strategy during the

Fig. 4. (Color online) Four tests of transfer with a temporal gain function.
(A) Observers had to reach out and touch small targets presented at random
on a computer screen along the arc of a circle equidistant from the start point.
Rewards and penalties were determined by the time of arrival at the target.
(B) Four temporal gain functions were used in four different experimental
conditions. The horizontal axis is movement time, and the rewards or
penalties associated with each possible movement time were displayed as
a time line similar to those shown here. If the observer touched the target in
the time window marked in green (slanted hatching), he received a reward of
5 points. If instead he arrived in the time window marked in red (vertical
hatching), he lost 15 points. (C) A plot of actual movement durations versus
the mean movement time that maximized expected gain for each condition
and each observer. The online version of this figure is in color. Figure
reproduced with permission from Hudson et al. (2008).
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main experiment, instead of maximizing expected gain by taking
account of their own temporal uncertainty function and experi-
mentally imposed gain function, we performed a hill-climbing
simulation using each subject’s temporal uncertainty function.
In the simulation, intended duration was moved away from the penalty
region by 3 At ms after each penalty and towards the center of the
target region by As ms for each miss of the target that occurred on
the opposite side from the penalty (corresponding to the 3:1 ratio of
penalty to reward). The value of At was initially set to be relatively
large. With each change of direction of step, At was reduced by
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25% to a minimum step size of 1.5 ms. While this simulation
approximately reproduced the final average reach times observed
experimentally, it does not provide a good model of subject
performance. First, there were significant autocorrelations of reach
durations beyond lag zero in the simulation data but not in the
experimental data. Second, a learning algorithm would be expected
to produce substantially higher o values during test than those
observed during training. This is what we found with our hill-
climbing simulation. Using subjects’ training ¢ values to produce
the simulated data, the simulation produced 17 out of 20 main-
experiment o values that were above the training values, whereas
our subjects’ main-experiment o values . . . were entirely consistent
with temporal uncertainty functions measured during training.”

Riesz representation theorem

The transfer criteria that we propose embody experimental tests
that allow us to determine whether observers can separately
encode and manipulate gain functions, likelihoods, and priors
according to eqn. (1). We have in effect proposed three additional
criteria (beyond near-ideal performance) for what it might mean to
separately represent and manipulate these functions in accordance
with BDT.

We do not assume that an observer who has passed one of the
transfer tests will pass the other two. If, for example, human
observers can transfer gain and prior functions but not likelihood
functions, then we will have learned something important about
the limitations of the human visuomotor system.

We can also characterize how much information each kind of
transfer task can give us about the observer’s representation of the
elements of BDT. Consider, for example, the transfer task where
we substitute a novel gain function for one learned. We can
combine the unchanging likelihood function and prior into
a posterior distribution f(w|x)L(w|x)m(w)=p(x|w)m(w) by
Bayes’ theorem. Then, eqn. (1) can be written as:

EG(d) = / /G(é(x),w)f(w\x)dxdw (4)

]

and changing the order of integration,

EG(d) = / /G(é(x),w)f(w|x)dw dx. (5)

To maximize eqn. (5), we need to only maximize

©

EG(d(x)) = / G(6(x), w)f (wlx)dw (6)

—©

for each specific choice of x (Maloney, 2002). Intuitively, on each
trial, we have only one specific choice of x and if we choose an
action that maximizes expected gain on that trial, then we maximize
overall expected gain across all trials. If the observer can compute
eqn. (6) for any choice of action, then he or she can compute

©

EG(a) = /G(a,w)f(w|x)dw. (7)

—0

Eqn. (6) is an inner product of functions (Apostol, 1969,
Chapters 1-2) analogous to an inner product of finite-dimensional
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vectors G e w. Suppose that we freely vary G(a,w), the gain function
as a function of w while holding a and f (w|x) constant. What can we
learn about f(w|x) by observing EG(a)? The reader familiar with
the finite-dimensional case likely recognizes that, after a finite
number of choice of G, w is determined by the values G e w. This
result is the basis for the method of classification images (Ahumada
& Lovell, 1971; Ahumada, 2002). In the infinite-dimensional case
as well, observing the output of free variation of G(a,w) for fixed
a also determines the posterior f(w]|x), a result known as the Riesz
representation theorem (Riesz, 1907, 1909; Rudin, 1966, pp. 129—
131). If the observer has the ability to combine arbitrary gain
functions with a fixed posterior following eqn. (7), then the values
of EG(a) that result determine the posterior distribution.

We propose the derivation above in order to characterize how
changes in gain function constrain the performance of the BDT
observer. Another way to summarize the result just derived is to
imagine an observer who has an incorrect estimate of the posterior
distribution but selects actions according to eqn. (1). We have
shown that for some choices of gain function, his performance will
fail to maximize expected gain.

We do not propose the thought experiment above as an experi-
ment that can be carried out practically. As stated, the resulting ex-
periment would involve testing performance with infinitely many
gain functions, an impossibility. However, it would be of interest
to examine human performance with multiple gain functions as
a means of gaining partial information about the observer’s
estimate of posterior distribution (e.g., its low-pass components).
Variations in prior could serve a similar role in probing how
observers decide how to act.

Conclusions

BDT is a mathematical framework used to model ideal perfor-
mance in a wide range of visuomotor tasks. Its elements (gain
function, likelihood, and prior) are readily interpretable in terms
of information available to the observer, and BDT allows the
experimenter to compute ideal performance in specific tasks and
compare human performance to ideal.

Recently, several researchers have proposed BDT as a process
model of perception as Bayesian inference (Knill & Richards,
1996), while others have questioned whether it is relevant as
a process model (Shimojo & Nakayama, 1992). We described
how reinforcement learning could be used to explain near-ideal
performance in a table-lookup observer that combined cues and
argued that good performance alone is not strong evidence that
“perception is Bayesian inference.”

We proposed additional experimental ““transfer criteria” intended
as experimental tests of the claim that perception is Bayesian
inference. These tests go beyond a simple benchmark comparison
of the observer’s performance to ideal and employ a novel compar-
ison of performance in a series of experimental tasks. Across the
series of tasks, the observer is exposed to several gain functions,
priors, and likelihood functions, and we examined whether observers
can transfer knowledge about gain functions, priors, and likelihood
functions from one task to another without additional learning.

We can distinguish the transfer tests we propose here from
measures of generalization across tasks. It is plausible that the
nervous system, having learned a task with gain function G,(a,w),
likelihood function L; (w|x), and prior 7(x), can more rapidly learn
an immediately following task with a novel gain function G,(a,w) but
with the same likelihood and prior. We could refer to this acceleration
in learning as generalization, but it is not an example of transfer.
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In the gain transfer task, we ask for evidence that the nervous
system, having first learned to carry out an initial task with G(a,w),
likelihood function L;(w|x), and prior 7(x), and then, having
learned a second task with distinct choices of gain function G,(a,w),
likelihood function L, (w|x), and prior 7,(x), can immediately carry
out tasks corresponding to novel combinations of the two gains, two
likelihoods, and two priors. The transfer task effectively tests whether
the nervous system can save and restore representations of multiple
gain functions independent of the specific likelihoods and priors
present in the tasks where the gain functions were first encountered.
The conclusion we draw is stronger than the conclusion we would
draw given only evidence of generalization.

We described experiments where human observers are asked to
switch from one gain function to another (Trommershéuser et al.,
2003a; Hudson et al., 2008). They are able to do so without evident
trends in performance that would suggest learning. An intuitive
summary of what we have learned is that human observers can
separately represent stochastic information corresponding to likeli-
hood and prior and combine this information with novel, arbitrary
gain functions according to BDT. The series of experiments
involved in testing transfer allows us to draw this conclusion, while
a benchmark comparison of performance in any single experiment
would not. It is of interest to determine whether human observers
can also transfer knowledge of likelihoods and of priors as they do
knowledge of gains.

Operationalization and representation

Suppose that the organism fails one or more of our transfer tests.
Can we conclude that the organism has no ‘“‘separate’ represen-
tation of gain functions or cannot save multiple representations of
gain functions across tasks? We would argue no. What we have
established is that whatever the structure and content of the
organism’s representation of BDT tasks, we see no evidence in
behavior that the organism can save and restore representations of
gain functions independent of the prior and likelihood functions
present when each gain function was first learned. An analogy may
be found in long-term memory where a memory trace may be
present but not accessible because of interference.

We can imagine an artificial learning system whose program-
mer is certain that gain, likelihood, and prior are learned in
separate data structures and where the combined gain, likelihood,
and prior for any previous task are stored indefinitely and can be
recalled when needed again to carry out the identical task.
Because of a programming oversight, however, there is no way
to extract gain from the representation of one task and likelihood
and prior from the representation of a second and combine them to
create the representation of a new task which the organism can
immediately use to solve the task corresponding to the novel
combination of gain, likelihood, and prior. The information is
there, but the architecture of the system cannot make use of it, and
this artificial learning system will fail the gain transfer task.

The necessity of transfer?

The evident advantage of transfer is that it allows organisms to
achieve near-optimal performance rapidly in novel tasks. It is
possible that transfer plays a second critical role in allowing
organisms to learn complex tasks as a series of tasks increasing in
complexity. In Trommershiuser et al., for example, observers first
were given the opportunity to learn their own visual and motor
uncertainties in a training task involving gain functions specifying
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only reward regions. Only then were they asked to address tasks
involving gain functions with both penalty and reward regions.
How would these observers have fared if asked to start with the
experimental task directly without any previous training?

Mamassian (2008) reported a visuomotor synchrony task where
participants had to press a key in anticipation of a visual target.
In that experiment, participants were not offered the possibility
to practice on a simpler version of the task prior to the main
experimental task. Even though motor learning was observed over
the course of the experiment, there was no evidence of optimal use
of the gain function. These observers failed the benchmark
criterion. Could they have done better if the experiment had first
allowed observers to train with simpler gain functions? We advance
the conjecture that prior experience with a simpler version of the
experimental task may lead to performance that more rapidly
converges to ideal. Results in the animal learning literature
concerning learning by chaining simple tasks together are analo-
gous to this claim (Mackintosh, 1974).

Mixture models

Several groups of researchers are currently investigating whether
selection of actions can be modeled as a mixture of experts
(Jordan & Jacobs, 1994; Meila & Jordan, 1996; Yuille &
Rangarajan, 2003), and we can consider whether such a model
could exhibit transfer. If, for example, the organism has learned
appropriate table-lookup strategies for a task with gain function
G(a,w), likelihood function L; (w|x), and prior 7;(x) and a second
task with distinct choices of gain function G,(a,w), likelihood
function L,(wl|x), and prior m(x), could it exhibit transfer by
mixing actions in action space? Evidently, there are two conditions
that must be satisfied for transfer to be possible. The first is that the
choice of actions in the transfer task that maximizes expected gain
must be expressible as a weighted mixture of the actions in the two
previously learned tasks, and the second is that the organism can
somehow arrive at the correct choice of weights used in mixing
actions. We emphasize, though, that such “‘mixture of actions”
models are not in conflict with BDT. Indeed, if the resulting actions
are those dictated by eqn. (1), the “mixture of actions” model
would simply be an implementation of BDT.

We end by emphasizing the importance of operationalization
of models of BDT. We sought to define concepts such as gain
functions, prior, and likelihood functions in terms of performance
in experimental tasks. The question of whether the observer
represents the elements of BDT and combines them by means of
some analogue of eqn. (1) is then addressable experimentally. “If
a specific question has meaning, it must be possible to find
operations by which an answer may be given to it. It will be found
in many cases that the operations cannot exist, and the question
therefore has no meaning.” (Bridgman, 1927).
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