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Abstract 

We investigated how subjects sample information in order to 
improve performance in a visuomotor estimation task. 
Subjects were rewarded for touching a hidden circular target 
based on visual cues to the target’s location. The cues were 
'dots' drawn from a Gaussian distribution centered on the 
middle of the target. Subjects could sample as many cues as 
they wished, but the potential reward for hitting the target 
decreased by a fixed amount for each additional cue 
requested. The subjects' objective was to balance the benefits 
of increased information against the costs incurred in 
acquiring it. We compared human performance to ideal and 
found that subjects sampled more cues than dictated by the 
optimal stopping rule that tries to maximize expected gain. 
We contrast our results with recent reports in the literature 
that subjects typically under-sample. 

Keywords: decision making, information sampling, optimal 
stopping, adaptive cue-combination, value of information. 

Introduction 

A critical challenge facing human decision makers is 

balancing the potential advantage gained by gathering (i.e., 

sampling) information against the time, energy, or money 

spent collecting it. For example, Stigler (1961) analyzed the 

economic costs of prolonging a search for a better price on a 

commodity. Since a relatively cheap price is easily obtained 

after a brief search, the cost of exhaustive search will often 

not offset the increased savings of finding the cheapest 

price. Instead, consumers should search only so long as the 
expected savings from finding a cheaper price are enough to 

offset the costs in continuing to search. Similar ideas are 

reflected in the mathematical literature on optimal stopping 

and optimal search (Wald, 1945a,b; Arrow et al., 1949; 

Stone, 1989), and feature prominently in the study of animal 

foraging (Stephens & Krebs, 1986). Less is known, 

however, about how effective humans are in trading off the 

costs and benefits of additional information, or how their 

performance varies across decision environments. 

Optimal information sampling behavior was a topic of 

interest in psychology in the 1960s (Green et al., 1964; 
Edwards, 1965; Tversky & Edwards, 1966; Wendt, 1969; 

Rapoport & Tversky, 1970), and this question has returned 

to prominence recently (Hertwig et al., 2004; Hau et al., 

2008; Gureckis & Markant, 2009; Vul et al., 2009; Hertwig 

& Pleskac, 2010). The critical issue in all this past research 

has been a comparison of human sampling behavior to that 

of an optimal decision maker. A common finding in the 

more recent studies is that participants often collect less 

information than needed in order to maximize expected gain 

(i.e., they  “under-sample”). 

However, a key limitation of recent work in this area 

(e.g., Hertwig et al., 2004) is that the cost of additional 

information was not precisely specified and, as a 

consequence, it was difficult to determine the optimal 

decision strategy for the task at hand. 

The goal of the present study was to examine 

information-sampling behavior in a simple visuomotor task 

where the cost of additional information was made explicit, 
and the optimal decision strategy was amenable to 

mathematical analysis. The subject had to estimate the 

location of an invisible target on a monitor, and touch it to 

earn rewards. Participants sampled cues that provided 

information about the location of the hidden target. Each 

cue was sampled from a bivariate Gaussian distribution 

centered on the target and, the more cues subjects had, the 

better their localization (Tassinari et al., 2006). However, 

each additional cue reduced the potential reward for hitting 

the target by a fixed amount. Participants had to balance the 

benefits of additional information (more cues) against the 
costs required to collect it. In the analysis below, we analyze 

our task and show how to compute the optimal number of 

samples to request in order to maximize expected gain. We 

then compare ideal performance to the performance of 

human subjects. 

Our experiment departs from previous work on 

information sampling in three key ways. First, unlike a 

number of recent analyses (e.g., Hertwig et al., 2004; Hau et 

al., 2008), we made the costs of collecting information 

explicit. Second, our novel decision making task involved 

accumulating evidence to guide a single, continuous, 

reaching movement (as opposed to, for example, making a 
one-off decision between multiple, discrete choice options). 

Finally, in our task, all the sampled cues were 

simultaneously present on the screen, limiting the secondary 

task demands placed on participants (e.g., keeping recent 

samples in memory). Prior work with similar tasks has 

shown that subjects are close to optimal in their ability to 

integrate such cues to guide action (Battaglia & Schrater, 

2007).  

In contrast to the recent findings and emphasis on under-

sampling in the decision making literature (e.g., Hertwig & 

Pleskac, 2010; Vul et al., 2009), we find that people 
systematically over-sample information. In our analysis, we 

rule out a number of possible explanations for why this 

might be the case. Ultimately, our results appear consistent 
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with a type of risk-aversion wherein participants are biased 

against uncertain outcomes (Tversky & Kahneman, 1981).  

Prior work on adaptive information sampling 

In a classic study, Tversky & Edwards (1966) had people 

perform a simple probability learning task requiring them to 

guess which of two lights would light up on each of 1000 
trials.  Correct guesses were rewarded and incorrect guesses 

punished, but the observer did not receive immediate 

feedback. To learn about the event probabilities, participants 

were given the option to, at any point, forgo guessing on a 

trial and observe the outcome instead. Optimal performance 

in the task entails observing a certain number of trials at the 

start of the experiment to learn the relative probabilities of 

each event, and then selecting on the rest of the trials the 

more frequent of the two events (Wald, 1947). However, 

participants in this study greatly oversampled (preferring on 

average around 300 observation trials compared to the 
optimal strategy of sampling around 30 trials). One likely 

explanation is that the participants mistakenly thought that 

the underlying reward probabilities were non-stationary 

(changing across time), and would therefore return 

intermittently to observe more outcomes to track changes in 

the relative probabilities. 

In contrast to Tversky & Edwards (1966), recent work on 

adaptive information sampling has focused on tasks were 

participants are forced to first sample information from 

various alternatives, only to utilize that information in a 

later decision phase (cf. Hertwig et al., 2004; Weber, Shafir, 

Blais, 2004; Hau et al., 2008; Gureckis & Markant, 2009).  
The key dependent measure of interest in such studies is 

how much information people collect before stopping and 

making a decision. A striking finding in this literature is 

how little information people collect before making a 

decision. For example, in Hau et al. (2008) subjects were 

presented with two decks of cards and given as much time 

as they wanted to sample freely the payout distribution of 

each deck before making a final decision as to which deck 

to choose from to be rewarded. Interestingly, subjects 

sampled a median of around 11 cards across the two decks 

before making their final decision. This very low level of 
search was often insufficient to accurately assess the 

expected gain of the choices (see also Rapoport & Tversky, 

1970). A similar preference for less rather than more 

information is observed in naturalistic choice scenarios as 

well (Todd, 2007). For example, in high stakes choices such 

as marriage, it has long befuddled social economists that 

individuals report dating relatively few people prior to 

marriage (Miller & Todd, 1998).   

    The frequent reports of under-sampling has led to a 

number of recent papers arguing that collecting small 

samples may actually be advantageous in certain decision 

environments. For example, Hertwig & Pleskac (2010) 
present an analysis showing how the limited samples 

participants take in certain tasks may actually help to 

amplify small differences between payoff functions and may 

enable relatively effective choice behavior in particular 

environments (meeting the criterion of “satisficing” laid out 

by Simon, 1956). However, one limitation of these analyses 

is that, due to the complexity of the empirical tasks, it is 

mathematically challenging to define the optimal rule for 

terminating information-sampling. In addition, access to 

information is often free (in terms of money) but entails 
unspecified costs associated with time or effort. In the 

present study we attempt to quantify and control both of 

these variables to help us better define the normative 

standard against which to judge human performance.  

Overview and model of the present experiment 

In the current experiment, subjects performed a task similar 

to those used by Battaglia & Schrater (2007) and Tassinari 

et al. (2006). The goal on each trial was to touch a hidden 

circular target on a touch-screen, akin to throwing a dart at a 
dartboard. The target's location changed from trial to trial 

and was cued by dots drawn from a Gaussian distribution 

that was centered on the middle of the target. To increase 

the probability of hitting the target, subjects were given the 

option to sample dots one at a time at a set cost-per-dot. 

With increased dots sampled, subjects had a greater chance 

of hitting the target, because the variance of the sampling 

distribution decreases with increased sample size. Indeed, 

previous work with such tasks has shown that subjects 

correctly interpret the arrival of more dots as reducing 

uncertainty about the target's location (Battaglia & Schrater, 
2007; Tassinari et al., 2006). But in the present task, the 

expected benefit of more information comes at the cost of 

reducing the points awarded for hitting the target. Do 

subjects know when to stop sampling and plan an action? 

How much information is enough?  Specifying 

optimal sampling behavior 

In order to analyze behavior in the task, we begin by 

defining the behavior of an optimal subject who samples 

information with the goal of maximizing expected gain. The 
variance of the underlying Gaussian distribution from which 

the cues were sampled, denoted 
2

�
S , remained constant 

throughout the experiment. To maximize expected gain, 

optimal subjects must minimize their estimation variance by 

using the mean (center of gravity) of the sample as the 

estimate of the target's location. The variance of the sample 

mean, denoted �
S

2
n , depends critically on sample size, 

denoted n . Furthermore, the optimal subject must take into 

account other sources of variability such as one's ability to 
precisely specify a location using the experimental 

apparatus. We refer to the aggregate of all the other sources 

of variability as "adjustment" variability and denote it 
2

�
A . 

These two sources of variance give rise to the subject's total 

experimental estimation variance: 

 

     
2 2 2( )   � � �= +

S A
n n .        (1) 

The amount of adjustment variability (�
A

2 ) is a latent 

parameter to our model that we could estimate empirically. 

2855



 
 
Figure 1: The expected gain function EG(n) is the product of the 

probability of hitting the target with n samples, and the gain earned 
for hitting the target (which takes into account the costs of the 
samples). Probability is plotted on the left vertical scale, gain and 
expected gain on the right. 

 

In defining our optimal decision maker, we assume that 

adjustment variability was zero for simplicity.  

Given 2
( )� n , we can compute the probability of hitting 

the circular target as a function of sample size as follows: 

 

 

   

p hit | n�
�

�
�
= �

�

0,� n( )( )
T

��  dx dy , (2) 

where the region of integration T  is the invisible circular 

target, and 
   
�

�

0,� n( )( )  denotes the probability density 

function of a bivariate Gaussian distribution centered on 

  

�

0 = 0,0( )  with covariance 

 ( )
( )

( )

2

2

0

0

�

�

� �
� = � �

� �� 	

n
n

n
. (3) 

Given [ ]|p hit n , we can compute the expected gain as a 

function of sample size as follows:  

 

 EG (n) = p hit | n�
�

�
�
 R � nC( ), (4) 

where R  is the initial point value of the target, and C  is the 

fixed cost to the target value that is incurred for each cue 

that is sampled. (Note that in the current experiment 

subjects were never penalized for missing the target, and so 

both R  and nC  must be mediated by [ ]|p hit n . Subjects 

were allowed to sample additional cues only so long as 

0� >R nC . All the figures will be cut off where ( )EG n  

starts to dip below zero.) 

Figure 1 shows an example of the expected gain function 

( )EG n  elicited in Equation 4, using the actual [ ]|p hit n  of 

the current experiment (assuming 
  
�

A

2  = 0 ), and the potential 

gain 
 

R � nC( )  used in one condition of the current 

experiment (the "low stakes, low cost" condition). 

 
 
Figure 2: Schematic display of the "high risk, high cost" condition. 
Left panel: Subject has sampled 6 cues (i.e., dots) and thus the 
potential reward for hitting the hidden grey target has been reduced 
from 60 points to 24 points. Right panel: The purple response dot 

shows the subject's response (made after touching the display and 
making fine adjustments) and the revealed target. Since the purple 
dot is within the target, the trial would be coded as a hit. The 
reward for this trial was 24 points. Had the subject's final setting 
been outside the target, the center of the target would show 0 (no 
reward). 
 

Note that the experimental design gives rise to a single-

peaked expected gain function (cf. Hertwig & Pleskac, 

2010, Fig. 3). The ideal subject would continue sampling on 

each trial until ( )EG n  peaks and then attempt to hit the 

target using the mean of the sample as their estimate. This 

strategy, irrespective of the adjustment variability 
2

�
A , will 

always lead to the maximum expected gain. In the following 

experiment, we computed the ( )EG n  curve and its 

maximum for two different decision environments and 

compared this normative standard to the number of samples 

taken by participants in the task. 

Experiment 

The cover story for the estimation task was a simple game 

where the goal was to collect points by hitting an invisible 

dartboard (using one’s finger instead of darts). To gain 

information as to the location of the dartboard, subjects 

could only observe the end-points of darts thrown by 
another shooter who could see the target and who would be 

aiming for the center of the target. The subject could use the 

outcomes of the other shooter’s attempts as a guide to the 

location of the target.  

Each subject alternated between blocks of two different 

conditions: "low stakes, low cost" and "high stakes, high 

cost". In the first condition, the initial reward for hitting the 

target was 40 points, and decreased by 2 points per cue. In 

the second condition the initial reward for hitting the target 

was 60 points, and decreased by 6 points per cue. 

For illustration, in Figure 2 (left panel), the subject has 
sampled six cues on a high stakes trial and must decide 

whether to sample a seventh cue or attempt to hit the target 

based on the sample of size   n = 6 . In the right panel, the 

subject has successfully hit the target (the purple dot was 

visible to the participant and represented the response). The 

reward for that trial is: 60 points - (6 cues x 6 points) = 24 

points. If the subject had missed the target then there would 

have been no reward or penalty for that trial. 
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Subjects were obligated to sample at least one cue per 

trial, and they were allowed to continue sampling one cue at 

a time so long as the value of the potential reward (R � nC)  

would not be reduced to zero. Thus, they were limited to 
sampling 9 cues in the high stakes condition and 19 cues in 

the low stakes condition. 

These two conditions and the properties of the stimuli 

were carefully chosen so that the expected gain of the ideal 

subject (with 
  
�

A

2  = 0 , and who stops sampling optimally) 

would be approximately the same for the two conditions 

(18.55 points per trial). The main difference between 

conditions was in their expected gain functions. The high 

stakes condition (red) had very steep curvature at its 
maximum and peaked at 4.05 cues, while the low stakes 

condition (green) had shallower curvature at its maximum 

and peaked at 6.77 cues (see Figure 3).  

 

Subjects Eight subjects at New York University 

participated in the experiment. None were aware of the 

purpose of the experiment and each was paid $10 per hour 

for their participation, plus a potential monetary bonus. 

 

Apparatus  Stimuli were displayed on a vertically mounted 

338 mm by 270 mm touch-screen LCD in a dimly lit room. 
The monitor was set at a resolution of 1280 pixels by 1024 

pixels (1 pixel = 0.26387 mm) with a 60-Hz refresh rate. 

Subjects were asked to seat themselves at a comfortable 

distance and adjust the height of the chair so that they could 

perform the experimental task with ease. The experiment 

was programmed and run using MATLAB and the 

Psychtoolbox libraries (Brainard, 1997; Pelli, 1997).  

 

Stimuli  The hidden target was a grey circle with radius = 

12.67 mm. The cues were small white dots with radius = 

1.056 mm. The cues were drawn from a Gaussian 

distribution (SD = 21.11 mm) that was centered on the 
target1. 

At the far ends of the screen there were two vertical 

reward bars that decreased in height with each additional 

cue sampled. Additionally, there was a number at the top of 

each bar indicating how many points would be awarded for 

hitting the target. To help subjects remember which 

condition they were in, green and red bars indicated the 

“low stakes, low cost” and “high stakes, high cost” 

condition, respectively.  

 

Design  Each subject ran in a practice session followed by 
the experimental session. The practice session consisted of 

30 trials for each condition in alternating blocks of 10 trials, 

                                                             
1 These properties entail that approximately 16.5% of the cues 
landed directly on the target. So if an extreme risk taker would 
choose to sample only one cue on each trial and use that as the 

estimate of the location of the target, then they would hit the target 
and get the maximum reward only 16.5% of the time—a strategy 
that in the current experiment is far from optimal. 

 

for a total of six practice blocks and 60 practice trials. The 

actual experiment consisted of 100 trials for each condition 

in alternating blocks of 25 trials, for a total of 8 

experimental blocks and 200 experimental trials. The 

ordering of the conditions was randomly assigned and 

counterbalanced between subjects. However, the ordering 
was kept constant between the practice session and the 

experimental session. Hence, a subject assigned to start with 

the high stakes condition would start both the practice and 

the experimental sessions with a high stakes block. Since 

the task was self-paced, subjects' participation time 

(including practice) ranged from 41 min to 74 min with an 

average of 62 min. 

 

Monetary bonus  Points earned in the task were converted 

into bonus money at a rate of five cents per point. This 

means that the maximum potential reward for hitting the 

target was 38 x $0.05 = $1.90 per low stakes trial, and 54 x 
$0.05 = $2.70 per high stakes trial. In order to maintain 

motivation throughout the task, subjects were informed that 

they would receive a monetary bonus on 5% of the trials, by 

randomly choosing five trials from each condition at the end 

of the experiment. The total expected monetary bonus of the 

most optimal ideal subject was $9.28. 

 

Procedure  Subjects were asked to use their dominant hand 

throughout the experiment. The experimenter stayed in the 

room during the practice blocks to explain the display and 

encourage subjects to use the practice trials to explore and 
observe the outcome of different decision strategies.  

At the start of each block, subjects were shown an 

instruction screen providing explicit information as to the 

initial point value of the target (40 points or 60 points) and 

the cost per sample (2 points or 6 points).  In addition, each 

condition ("low stakes, low cost" or "high stakes, high 

cost") was associated with a particular color scheme for the 

display elements (green or red). Lastly, subjects were 

required to confirm the appropriate cost per sample by 

pressing "2" or "6" before the block would begin. 

At the start of each trial, the screen was completely black 

except for the colored reward bars and numbers at the far 
ends of the screen indicating the current reward for hitting 

the target. To sample a cue, subjects pressed the space bar 

causing a white dot to appear on the screen. Concurrent with 

the appearance of the cue, the reward bars and numbers 

would decrease to indicate the lower reward available for 

hitting the target. If subjects wanted more samples, they 

simply hit the space bar repeatedly until they were ready to 

reach for the hidden target. 

To hit the invisible target, subjects simply touched the 

screen with their finger causing a small purple response dot 

to appear. Subjects were allowed to adjust their response by 
moving the purple dot with their finger or by pressing the 

arrow keys. Once satisfied with their response, subjects 

pressed the space bar to receive feedback. During the 

feedback phase of each trial, the hidden target would appear 

in grey along with all the white cues sampled on that trial. 
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Figure 3: Results: Points per trial earned by subjects is plotted 
versus the number of samples taken (error bars mark the standard 

deviation of the number of samples taken by each subject) for the 
“low stakes, low cost” (green) and “high stakes, high cost” (red) 
conditions. The expected gain curve for each condition is plotted in 
the corresponding color, with corresponding dashed lines marking 
the number of samples needed to maximize expected gain. For this 
figure, we plot the corresponding expected gain curves for 

2  0� =
A  (see Figure 4 and Discussion). 

 

If the small purple response dot was within the target, the 

trial was counted as a hit and the number of points awarded 

for that trial would appear at the center of the target. If, 
however, the small purple response dot was not within the 

target, then the trial was coded as a miss and a 0 appeared at 

the center of the target. A second space bar press began the 

next trial. 

   Finally, at the end of both the practice session and the 

experimental session, subjects were given feedback as to 

how they performed on each of 10 randomly selected trials 

and how much bonus money they received as a result. This 

feedback at the end of the practice session (which was not 

actually paid out) served to give subjects a rough sense of 

the range of actual bonuses possible. 

Results 

On average, subjects collected 14.06 points per trial 

(SD=2.19), which is 76% of the maximum possible 

expected gain of 18.55 points per trial.  

Figure 3 shows each subject's mean and standard 

deviation of the number of cues sampled for each of the two 

conditions. For illustration, we place individual data points 

at heights that correspond to their average gain per trial. For 

the same sampling behavior, some subjects where better 

able to successfully hit the target and collect more points. 

This is primarily due to each individual's adjustment 

variability �
A

2 . (However, see Discussion for an explanation 

of why this does not affect our results.) 

All subjects correctly sampled more cues in the low 

stakes condition (M=8.04, SD=1.5) than the high stakes 

condition (M=5.87, SD=0.72), t(7)=4.54, p <.003. The solid 

curves show the respective low stakes and high stakes 

expected gain functions for the perfect, ideal subject whose 

adjustment variability 
2  0� =
A . The expected gain for this 

ideal sampler is maximized when sampling 6.77 cues in the 

low stakes condition and 4.05 cues in the high stakes 

condition. 

 
 
Figure 4: The expected gain function EG(n) changes with 

increased adjustment variability 
2

�
A . Notice that as adjustment 

variability increases, one would need to sample fewer and fewer 
cues to have the maximum expected gain (indicated by the black 
solid and dashed lines for different degrees of adjustment 
variability). 
 

Statistical tests back up the intuition shown in Figure 3 

that almost all subjects were risk-averse and sampled more 

cues than dictated by the optimal stopping rule that tries to 

maximize expected gain. The exceptions were one subject 

who was risk-seeking and under-sampled in the low stakes 

condition (M=5.38, SD=1.36), t(99)=-11.9, p <.001, and one 

other subject who was not significantly different from the 

optimal stopping rule in the low stakes condition (M=7.03, 

SD=1.55), t(99)=0.19, p > .05. 

Discussion 

Our discussion takes the form of a set of questions and 

explores possible alternative explanations of our results. 

 

Question 1: In our model, we assumed that adjustment 

variability 
2

�
A  was 0. Could the observed oversampling be 

due to subjects' adjustment variability? 

 

Figure 4 shows how the expected gain function ( )EG n  of 

an ideal sampler changes as the adjustment variability 

increases. Notice first that as 
2

�
A  increases, one must sample 

fewer and fewer cues in order to have the maximum 

expected gain. Thus, accounting for increased adjustment 

variance would lead to a decrease in the number of samples 

taken and could not account for the pattern of oversampling 

that we found. Different individual settings of 
2

�
A  might 

explain why some subject's data fall right beneath the curves 

in Figure 3 (due to low 
2

�
A ), while others fall lower (due to 

high 
2

�
A ). Note that none of the subjects' data in Figure 3 is 

higher than the expected gain curves for 
2  0� =
A . 

 

Question 2: Could sub-optimal decision-making reflect an 

inability of participants to discern small differences around 

the peak of the utility function (i.e., the “flat maxima 

phenomena”)? 

 

    Failure to distinguish regions around the peak should look 

like an unsystematic tendency to both over- and under-
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sample. Only one subject under-sampled, and only in one 

condition. The systematic tendency to over-sample in our 

experiment indicates that subjects were sensitive to the 

expected gain differences that accompanied changes in the 

number of cues sampled. 

 
Question 3: Why might people oversample? 

 

We conjecture that over-sampling is the result of a form 

of risk-aversion (Tversky & Kahneman, 1981). Risk-averse 

subjects are willing to pay money to reduce the variability 

of their rewards. They accept a smaller expected gain per 

trial, but the variation in gain from trial to trial is reduced as 

well. In our task, risk-aversion implies that subjects will 

systematically collect more information than is optimal for 

maximizing expected gain. The additional information 

offers them a higher probability of hitting the target, but at 

the cost of a reduced expected reward for doing so.  
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