
In a typical recognition memory test, individuals con-
sider a series of test items presented in random order. 
Some of the test items have been seen previously (old), 
others are new, and the prior probability that an item is 
old is . In the simplest case, the individuals are asked 
to classify each item as “old” or “new,” and their per-
formance is measured by the proportion of correct 
classifications.

Signal detection models of the recognition process as-
sume that the information available on a single trial can 
be represented by a random variable X. The distribution 
of this variable is fO(x) when the item is old (O) and fN(x) 
when it is new (N). If X is a continuous random variable, 
fO(x) and fN(x) are probability density functions, whereas 
if X is discrete, they are probability mass functions.1

Given X, the likelihood ratio (LR) for “old” over “new” 
responses is
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This ratio is a measure of the evidence in the data favoring 
“old” over “new” (Royall, 1999). The likelihood ratio de-
cision rule compares the likelihood ratio in favor of “old” 
with a fixed criterion,

 L(X )   (2)

and returns an “old” response if the likelihood ratio ex-
ceeds  or otherwise returns a “new” response. If the 
criterion  is set to (1  )/  (the prior odds in favor of 
“new”), the resulting decision rule has the highest ex-
pected proportion of correct responses (Duda, Hart, & 
Stork, 2001, p. 26; Green & Swets, 1966/1974, p. 23) of 
any decision rule.

Even when the item information X is multivariate, 
the LR rule converts the item information to a univari-
ate measure of evidence in favor of “old” over “new,” 
and a simple comparison of the prior probabilities of old 
and new items determines whether the evidence justi-
fies an “old” response. If there are more than two re-
sponse categories, the LR rule can be easily generalized 
(Duda et al., 2001, chap. 2). If responses are allowed to 
be graded (e.g., individuals give a confidence rating for 
each choice), the LR rule is also easily generalized by 
assuming that there are multiple criteria (Green & Swets, 
1966/1974, pp. 40–43).

A more convenient form of the LR rule, which we will 
use, replaces the comparison in Equation 1 with a compari-
son of log likelihoods. The resulting log-likelihood ratio ( ) 
rule leads to exactly the same decisions as the LR rule:

  (X )  log( , (3)

where, for convenience, we define   (X ) as the ran-
dom likelihood corresponding to the random strength 
variable X and
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We refer to the latter function as the transfer function. It 
maps from the evidence axis to the log-likelihood axis. 
We emphasize that   (X ) is a random variable—the 
evidence available on each trial—whereas (x) is a func-
tion that will prove useful in what follows.

The LR rule can be applied for any choice of the two 
distributions fN(x) and fO(x) (Wickens, 2002, p. 165). In 
work on recognition memory, these two distributions are 
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considered at length in the Discussion section below. How-
ever, if the postulated strength measure is just an increas-
ing function of the LR and the criterion is transformed in 
the same fashion, the resulting strength/familiarity decision 
rule would be mathematically equivalent to the LR rule.

In this article, we examine the hypothesis that the LR rule 
is an accurate model for human performance in recognition 
memory tasks. We show both that LR implies three strong 
regularities in recognition memory and that these regulari-
ties are evident in a range of item recognition data. We also 
derive transfer functions for signal detection theory (SDT) 
on the basis of four distributional families and use these 
transfer functions to characterize decisions on the basis of 
an LR rule. Our general approach is described below, after 
we review the elements and terminology of SDT as it is 
used when modeling recognition memory tasks.

SDT: A BRIEF SURVEY

Here we introduce some signal detection terms and mea-
sures that will be used in the discussion that follows. Fig-
ure 1A is the signal detection representation of a recogni-
tion memory test with a distribution of new items, fN(x), on 
the left and a distribution of old (studied) items, fO(x), on 
the right. On each trial, a strength variable X is compared 
with a fixed criterion c0, leading to an “old” response if X  
c0, or a “new” response otherwise. We label the outcome of 
a trial as a hit (H), p(H | O)  p(X  c0 | O), when the item is 
old [i.e., drawn from fO(x)] and the response is “old.”

The conditional probability of a hit, P(H | O)  P(X  
c0 | O), is the area under fO(x) to the right of the criterion c0. 
The area under fN(x) to the right of the criterion c0 corre-
sponds to false alarms (FAs) (Green & Swets, 1966/1974, 
p. 34). If the criterion is set at a point at which the “old” 
and “new” distributions intersect, the criterion  in Equa-
tion 2 is equal to 1. We refer to this choice as unbiased; it 
is represented by the middle vertical line in Figure 1A.

The terms hit and false alarm are inherited from analy-
sis of binary old–new and yes–no tasks. More information 
about individuals’ memory is obtained by asking them how 
confident they are about their classification of an item as 
new or old; they now respond by selecting a rating response 
from an ordered set of ratings {R1  R2      Rn}. A 
typical choice of ratings would range from 1 to 6, with 1 rep-
resenting most sure the item is old, and 6, most sure the item 
is new. We assume that the rating responses are obtained by 
setting up n  1 criteria c1  c2      cn 1, represented 
by the dotted vertical lines in Figure 1A. The criteria divide 
the horizontal axis into bins. We assume that the rating cor-
responds to the bin that contains the strength variable X.

We can plot the probability of each response for an old 
item versus the probability of the same response for a new 
item as a receiver operating characteristic (ROC):

 P(R  Ri  |  O)  f [P(R   Ri  |  O)], i  1,    , n  1, (11)

where
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typically assumed to be normal, differing in their means 
and possibly their standard deviations:
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When O  N  , we refer to the model as equal-
 variance normal. The LR for the equal-variance normal 
case depends on the parameters O, N, and , and we can 
set N  0 and   1 with no loss in generality. The sole 
remaining parameter, O, is typically denoted d . Even 
though O, N, and  may have physical units, the quantity 
d  is unitless.

In the equal-variance normal case, the transfer function 
is linear (see Appendix A for the derivation),
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and the function that is inverse to the transfer function (the 
inverse transfer function) is well defined (if d   0) and 
is also linear,
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If d   0, the linear transformation (x) has positive slope, 
and the strength rule

 X  c0 (9)

is equivalent to the LR rule

(X )  (c0)  0 (10)

obtained by transforming both sides of Equation 9 by the 
strictly increasing function (x).

In the equal-variance normal case, c( ) and (c) each 
have one parameter d , the parameter that characterizes 
the underlying distributions. We will write c( ) as just c 
or (c) as just  when there is no need to emphasize the 
functional dependence.

The transfer function allows us to translate from the 
strength-of-evidence axis to the log-likelihood axis. The 
transfer equation is always well defined, but as we will 
learn later, it need not be invertible in some of the models 
discussed; either the inverse c( ) may not exist for some 
values of  or there may be multiple values of c corre-
sponding to a single value of .

We will consider all rules that make exactly the same 
decisions as the LR rule, given the same value X, as ex-
amples of the LR rule, and will refer to them collectively 
as the LR rule (see Green & Swets, 1966/1974, p. 19).

Strength Models
Other models of recognition replace likelihood with a 

measure of the strength (or familiarity) of items and make 
the assumption that an “old” response will occur when the 
strength exceeds a fixed criterion. Some strength models are 
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Figure 1. SDT representation of new and old item distributions for equal-variance normal and 
unequal-variance normal distributions. (A) N and O equal-variance distributions. (B) N and O 
unequal-variance distributions. (C) ROC, equal variances. (D) ROC, unequal variances. (E) z-ROC, 
equal variances. (F) z-ROC, unequal variances.
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also better recognition of new items as new. In a yes–no 
recognition test, this effect is seen in a mirror-symmetric 
pattern of hits and false alarms:

 FAS,N  FAW,N  HW,O  HS,O, (14)

where a subscript S denotes strong, a W, weak, and N and 
O, new and old, respectively. We will use a transparent 
notation for such inequalities in which each term refers to 
the proportion of “yes” responses:

 SN  WN  WO  SO. (15)

There is extensive evidence for the mirror effect in the 
literature (see, e.g., Glanzer & Adams, 1985), and later we 
will document it further.

2. The variance effect. When two sets of items or con-
ditions in a recognition test produce a difference in ac-
curacy, decisions based on LR will affect the relative vari-
ances of the “new” distributions. That is, SN, the “new” 
distribution of the strong condition, will have a larger 
variance than WN, the “new” distribution of the weaker, 
lower-accuracy condition. This is a novel general effect, 
not previously noted in the literature. It is measured using 
the slope of the z-ROC that plots SN item ratings against 
WN item ratings, the new/new z-ROC. If the LR effect 
holds, the slope will be less than 1.

Decisions based on LR also produce a parallel ef-
fect on the relative variances of the “old” distributions. 
SO, the “old” distribution of the S condition, will have a 
larger variance than WO, the “old” distribution of the W 
condition. This effect is measured using the slope of the 
old/old z-ROC, which plots the SO item ratings against 
the WO item ratings. Again, if the LR effect holds, the 
slope will be less than 1. The old/old z-ROC, however, 
is also affected by another factor that complicates its in-
terpretation.2 We will therefore concentrate on the new/
new z-ROC, but will document the results for the old/old 
z-ROC as well.

3. The z-ROC length effect. When decisions are made 
on the basis of LR, the length of the z-ROC contracts as a 
function of accuracy; the more accurate the condition, the 
shorter the z-ROC. This was proved for the equal-variance 
normal model by Stretch and Wixted (1998a).

We will show that these three diagnostic regularities re-
sult from LR decisions for four general models: the equal-
variance normal, unequal-variance normal, binomial, and 
exponential models. Then, we will verify that the regulari-
ties characterize a wide range of experimental data. From 
this point on, however, we will use the log-likelihood ratio 
( ) in the discussion, for convenience. As noted above, the 
decision rule   (X )  log( ) of Equation 3 is equiva-
lent to the LR rule of Equation 2, but its use allows us to 
present simpler equations.

As noted above, the log-likelihood ratio   (X ) is a 
function of a random variable X and is therefore a random 
variable itself, with its own distribution, mean, and vari-
ance. The distribution of  is determined by the form of 
the distribution of X and the function ( ). Our analyses 
involve characterizing its distribution.

Note that we used ordinary linear regression to estimate 
linear fits and obtain slopes for the computed examples 

is the conditional probability that the rating R is Ri or less 
when the stimulus is old and
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is the conditional probability that the rating is Ri or less 
when the stimulus is new. The confidence rating ROC for 
item recognition is a function relating the ratings of old 
items to those of new items. The ROC for the distributions 
in Figure 1A is shown in Figure 1C.

The ROC is often replotted on normalized (double prob-
ability) axes with proportions transformed into z scores. 
Each proportion is transformed to z  1( p), where (z) 
is the cumulative distribution function of a normal random 
variable with mean 0 and variance 1. When the data are 
plotted on transformed axes, as shown in Figure 1E, the 
resulting plot is called a z-ROC. Such a plot yields addi-
tional information about the two underlying distributions: 
If the underlying distributions are normal or near normal, 
the z-ROC will be a straight line with a slope of N/ O. 
The two distributions in Figure 1A are normal with the 
same standard deviation and, therefore, the z-ROC is a 
straight line with slope 1.

If the underlying distributions are normal or near nor-
mal and have unequal standard deviations, the z-ROC is 
still a straight line, but the slope will not equal 1. It will in-
stead equal the ratio of the standard deviation of the “new” 
distribution to that of the “old” distribution, N/ O.

The unequal-variance normal case is shown in the right 
panels of Figure 1. In panel B, the “new” distribution has 

N  1 and the “old” distribution has O  1.25. Panel D 
shows the corresponding unequal-variance ROC, which is 
now asymmetrical. The slope of the corresponding z-ROC 
in panel F is N/ O  1/1.25  0.8.

The decision axis used in most work on recognition 
memory is not LR, but strength or familiarity. For the 
simple cases presented in Figure 1, it is not obvious how to 
determine whether memory decisions are based on the LR 
rule or on a rule based on strength or familiarity that is not 
equivalent to an LR rule. It will be possible to make this 
determination when we consider the case of two-condition 
recognition.

TWO-CONDITION RECOGNITION

There are many experiments in which individuals are 
presented with two different kinds of items (e.g., high- vs. 
low-frequency words) or two different study conditions 
(e.g., single vs. repeated presentation) that produce a dif-
ference in accuracy. These two-condition experiments are 
important because they show three regularities that are 
produced by LR: (1) the mirror effect, (2) the variance 
effect, and (3) the z-ROC length effect. We describe each 
of these effects in turn.

1. The mirror effect. When two sets of items or condi-
tions in a recognition test produce a difference in accu-
racy and decisions are based on LR, the strong condition 
(S) will give better recognition of old items as old, and 
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items, because they have not been studied, cannot differ in 
strength. We do not separate them here, in order to show 
the effects of the  transformation clearly.3 SN and WN 
are Normal(   0,   1), WO is Normal(   1,   1), 
and SO is Normal(   1.75,   1). The selected crite-
ria c were 2, 1, 0, 1, and 2.

The plots in Figure 2A can be considered as plots of 
raw information about strength and familiarity. We next 
examine what happens when decisions are made on the 
basis of . When they are, the densities in Figure 2A are 
redistributed on a  axis, as in Figure 2B. This produces 
the three regularities, all of which can be seen in Figure 2; 
next, we describe each one.

1. The mirror effect. When recognition decisions are 
based on LR, the difference in accuracy produces a separa-
tion between SN and WN that mirrors the separation of SO 
and WO. This effect can be seen in the modes of SN and 
WN in Figure 2B. The distributions are now in a symmet-
rical, mirror array. The “new” distributions SN and WN, 
which were originally in the same location in panel A, have 
moved away from each other. The more accurate condition 
S now generates an SO distribution to the right of WO, as 
before, but also an SN distribution to the left of WN. The 
effect follows from Equation 18, as we now describe. When 
the densities in panel A are reassigned to form the distribu-
tions on the  axis in panel B, their means (and modes) be-
come d 2/2 for the “old” distributions and, symmetrically, 

d 2/2 for the “new” distributions. With a difference in 
d s between two conditions, the means of these  distribu-
tions are SN  1.53, WN  0.50, WO  0.50, SO  

1.53. With a centrally placed criterion, the proportions of 
“yes” responses (false alarms to SN and WN, hits to WO 
and SO) give the mirror effect: SN  .19  WN  .31  
WO  .69  SO  .81.

2. The variance effect. The second regularity stems from 
the effect of accuracy, d , on the variance of . As can be 
seen in Figure 2B, the distributions with a higher d —SN 
and SO—show greater dispersion than the W distribu-
tions—WN and WO—which have a lower d . Recall that 
the initial distributions in panel A are all of equal variance. 
When the distributions are transformed to  distributions, 
their variances become a function of d —namely, d 2. To 
measure the change in variance induced when decisions 
are based on , we plot the new/new z-ROC of SN against 
WN. The slope of this z-ROC measures the relative spread 
of the two “new” distributions, because, as noted earlier, 
the slope corresponds to the ratio of the standard devia-
tions. Panel D displays the SN/WN z-ROC for the given 
parameters, with slope

W

S

W

S

d

d
1

1 75
0 57

.
. .

Stated more generally, the slope of the new/new z-ROC for 
two conditions that differ in accuracy will be less than 1. 
This regularity follows from Equation 17.

3. The z-ROC length effect. The value d  governs not 
only the mean and variance of the LR distributions, but 
also the length of their z-ROCs. Assume that the same 
five log- likelihood ratio criteria 1,    , 5 delimit the 

of the models. There is no issue with using linear regres-
sion in this way. The ROCs are plots of one theoretical 
distribution against another, and neither axis is affected 
by random error.

We first discuss the equal-variance normal model.

Equal-Variance Normal Model
This model is of particular importance because it shows 

the three equations that govern the regularities and their 
derivation in a clear, simple form. The three equations 
are the equations below for the mean (Equation 16), the 
variance (Equation 17), and the criterion z scores (Equa-
tion 19). In the three models that follow—the unequal-
variance normal, the binomial, and the exponential—the 
governing equations are more complex and require com-
putation for the demonstration of the regularities.

When fN(x) is normal with mean 0 and variance 1, and 
fO(x) is normal with mean d  and variance 1,  is also nor-
mally distributed. The conditional means and variances 
of  are
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and
 Var(   |  N)  Var(   |  O)  d 2. (17)

These equations, together with Equation 7, produce the 
three regularities. The derivations of the equations are 
given in Appendix A. The keys to these derivations are the 
transfer function (c) and its inverse c( ), which are both 
also derived in Appendix A.

Equation 16 leads to the mirror effect. Since dS  dW, 
we have

 E(  | N, S)  E(  | N, W)  E(  | O, W)  E(  | O, S). (18)

Note that these inequalities capture the order of the un-
derlying distribution means, which is only indirectly indi-
cated by the hits and false alarms of Equations 14 and 15. 
As we show later, in the section on bias, hits and false 
alarms do not always give an accurate picture of the un-
derlying means.

Equation 17 produces a new/new slope that is 1 (and 
also an old/old slope 1). Since dS  dW, the slope of the 
new/new z-ROC is dW/dS  W/ S  1.

Equation 8 (the inverse transfer function) produces the 
z-ROC length effect. It implies that for the z scores of the 
several criteria c plotted in the standard z-ROC,

 
c d

d
( ) .

2  
(19)

Therefore, for any fixed , as d  increases, all cs converge 
toward d /2 and toward one another.

To illustrate these regularities, we present an example 
of two-condition recognition for equal-variance normal 
distributions in Figure 2. Panel A represents the initial 
distributions of strength for SN, WN, WO, and SO. SO is 
placed to the right of WO, representing greater accuracy. 
SN and WN are not separated. It can be argued that new 
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well. z-ROC slopes generally fall between 0.60 and 0.90, 
averaging 0.80 to 0.85 (Glanzer, Kim, Hilford, & Adams, 
1999, Table 3). Such slopes of less than 1 indicate that 

O  N, or that the “old” distribution has a greater vari-
ance than its corresponding “new” distribution. Further 
evidence of z-ROC slopes less than 1 is presented later, in 
the section on survey data.

With unequal variances, however, the simple equations 
of the equal-variance normal model become more com-
plicated and opaque. The complications are discussed in 
detail in Appendix B, and the equations are derived there. 
One key difficulty is that the transfer function (c) is not 
invertible over its full range. It is no longer easy to discern 
the three regularities by looking at the equations for the 
mean, variance, and criteria, but Appendix B shows that 
the regularities appear despite the complications. We can 
show, moreover, by computation that the regularities still 
hold for the typical conditions of recognition memory ex-
periments. To do that, we need to modify the equal-variance 
example of Figure 2, assigning a different  to each “old” 
distribution. SO is now Normal(   1.75,   1.25), and 
WO is now Normal(   1,   1.15). SN and WN remain 
as Normal(   0,   1). The changes in  for SO and WO 
conform to findings in the literature of a larger  for the SO 
distribution (Glanzer et al., 1999). The selected criteria ci 
are 1.4, 1, 0, 1, and 2. (The complications introduced by 

response regions corresponding to the confidence ratings 
on a  six-point scale in both the W and S conditions. We 
compute estimates 1

W,    , 5
W of 1,    , 5 in the W 

condition and estimates 1
S, . . . , 5

S of 1,    , 5 in the 
S condition. If we define the length of the z-ROC in the 
W condition, (W), to be 5

W  1
W and the length in the S 

condition, (S), to be 5
S  1

S, it follows from Equation 19 
that
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Since dW  dS, E[ (W)]  E[ (S)].
The inverse relation of z-ROC length to d  can be seen 

in Figure 2C. To measure the changes in length, the Eu-
clidean distances between the end points of each z-ROC 
are computed and compared. The Euclidean distances are 

(W)  3.24 and (S)  5.66, and the ratio of the two 
lengths, 0.57, is equal to dW/dS.

The Unequal-Variance Normal Model
This is an important model because unequal-variance 

normal models generally fit available recognition data 
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Figure 2. Equal-variance normal model. (A) Four initial distributions—SN, WN, WO, and SO—on a 
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decision axis. (C) Standard z-ROCs for S ( ) and W (*). (D) New/new z-ROC.
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larities in moving from the equal- to the unequal-variance 
normal model. This is true for the following reason.

When the “old” distribution has a larger variance than 
the “new” distribution, there are two points of intersection 
between the two distributions. For conditions typical of rec-
ognition memory experiments, one is near the midpoint be-
tween the two distributions (before the  transformation), 
and the other is far out in the leftmost tails of the distribu-
tions. We can compute the positions of both intersections 
by solving a quadratic equation (see Appendix B, as well as 
Stretch & Wixted, 1998a). For the distributions in Figure 3, 
the density beyond the second, leftmost intersection is neg-
ligible; the effect of the second intersection in distorting the 
regularities would not be measurable. To further explore the 
effects of unequal variance, we redid the example in Fig-
ure 3 with the most extreme values, 1.61 and 1.92, found in 
the survey that we report below (as reflected in the slopes of 
W, 0.62, and S, 0.52). When we did this, all three regulari-
ties held. See also the discussion in Appendix B.

The Binomial Model
Another distribution that has been used in the theo-

retical analysis of recognition memory is the binomial 
(Glanzer, Adams, Iverson, & Kim, 1993). It is introduced 
here to show that the three regularities appear with other 

unequal variances, discussed in Appendix B, do not permit 
us to use a criterion of 2 as in the equal-variance normal 
example.) The results for this unequal-variance example 
are shown in Figure 3. The variances of the underlying SO 
and WO distributions in panel A now differ initially on the 
strength axis, but the three regularities hold.

1. The mirror effect. There is a slight change in the hit 
and false alarm rates, but the mirror pattern holds: SN  
.20  WN  .27  WO  .63  SO  .75.

2. The variance effect. Although SN and WN start with 
identical distributions, as in panel A, when converted to  
distributions, SN shows greater dispersion than does WN, 
as seen in panel B. The slope of new/new z-ROC, shown in 
panel D, is therefore less than 1—namely, 0.57.

3. The z-ROC length effect. The z-ROCs in panel C show 
the reduction in the length of the z-ROC that accompanies 
an increase in d . The length of the S z-ROC is 3.08, but 
the length of the W z-ROC is 5.63.

The Unequal-Variance “Problem”
It is necessary to consider the unequal-variance normal 

model because recognition memory data show unequal 
variances. Unequal variances, as we have seen, introduce 
complications. The effect of the complications, however, 
is minor. Only small changes are introduced in the regu-
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the LR rule by showing that it produces the three regulari-
ties with a very different distribution, the exponential:
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This SDT model has been discussed by Green and Swets 
(1966/1974, pp. 78–81).

The equations for the mean, variance, and criteria for 
the exponential distribution, along with their derivations, 
are presented in Appendix D. Figure 5 displays an ex-
ponential example. The parameters for this example are 

N  1 for the single “new” distribution, WO  4 for the 
WO condition, and SO  12 for the SO condition. The 
selected criteria c are 1.2, 1, 0, 1, and 2. (The expo-
nential model limits the range of possible criteria.)

1. The mirror effect. It is no longer possible to look at 
the modes of the four  distributions in Figure 5B, as in 
the preceding models, to see the mirror effect. The effect, 
defined now by the intersection of WN with WO and the 
intersection of SN with SO, still appears, though.

distributions: They are general. The mean, variance, and 
criteria equations for the binomial are presented in Appen-
dix C. As in the unequal-variance case, they are opaque, 
in that their relations to the regularities are not clear from 
simple examination; computation is required. The ex-
ample represented in Figure 4 is based on the following 
binomial parameters: p(SN)  p(WN)  .10, p(WO)  
.12, p(SO)  .15, N  100.

The selected criteria were 2, 1, 0, 1, and 2. The same 
effects appear as for the normal distribution models: the 
mirror effect, the z-ROC length effect, and the new/new 
slope effect. The equations that produce these effects are 
presented in Appendix C.

1. The mirror effect. This effect can be seen in the modes 
of Figure 4B. The hits and false alarms show the mirror ef-
fect: SN  .30  WN  .42  WO  .67  SO  .76.

2. The variance effect. This effect can be seen in panel D. 
The new/new slope is less than 1—namely, 0.39.

3. The z-ROC length effect. This effect can be seen in 
panel C, with (S)  3.45  (W)  9.16.

The Exponential Model
The preceding three models have similar distributions. 

We can further demonstrate the generality of the effects of 
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necessary criteria for an SDT model of recognition mem-
ory to exhibit the regularities.

We turn now to available data for evidence of the three 
regularities.

DATA DEMONSTRATING THE  
THREE REGULARITIES

We searched for ROC data from two-condition recog-
nition memory experiments that met three requirements: 
The two conditions must (1) differ in accuracy, (2) appear 
in within-subjects experiments, and (3) include two iden-
tifiable sets of new items.

The reason for the first requirement is obvious. The 
second requirement made it reasonable to assume that the 
same criteria were maintained for the two experimental 
conditions. The third was necessary to permit evaluation of 
the new/new slope effect and the mirror effect. Not all two-
condition experiments satisfy this requirement.4 We ana-
lyzed all experiments that we found that met these criteria.

This search produced a total of 36 experiments. Of these, 
33 had confidence rating ROCs, and 3 had binary ROCs 
(Elam, 1991, Experiment 3; Ratcliff, Sheu, & Gronlund, 

The computed hits and false alarms show the pattern 
clearly: SN  .07  WN  .16  WO  .63  SO  .80.

2. The variance effect. The variance effect is seen in the 
slope of the new/new z-ROC in Figure 5D. This slope, 0.59, 
is less than 1.

3. The z-ROC length effect. Figure 5C shows the z-ROC 
length effect. The lengths are (S)  1.28 and (W)  
2.36.

Summary Statement on the Models
Exploration of models based on other distributions—

namely, the hypergeometric and poisson distributions—
shows that the three regularities appear with them, as well. 
As Wickens (2002, p. 165) emphasized, the likelihood 
ratio test does not require that the underlying distribu-
tions have any particular form. This demonstration that 
the same trio of regularities are produced for exponential 
as well as for normal and binomial distributions leads us 
to make the following conjecture: For a wide range of un-
derlying distributions, including those considered here, 
decisions made on the basis of LR will produce the same 
three regularities. The range of these distributions remains 
to be fully specified. However, in Appendix E, we set out 
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ual ROCs for two of the data sets reported here and found 
no substantial difference. Stretch and Wixted (1998a) per-
formed a similar comparison and reached a similar con-
clusion for the data they considered.

Data related to the three regularities are listed in Table 1, 
with violations of the regularities italicized.

The Mirror Effect
The first four data columns of Table 1 contain the propor-

tions of “yes” responses, both hits and false alarms, for eval-
uating the mirror effect. The effect is present whenever the 
proportions are ordered SN  WN  WO  SO. Of the 48 
cases, only 6 violate the effect. The probability of 6 or fewer 
violations occurring by chance, according to a binomial test 
( p  .5), is .00000005. To answer the potential objection 
that we had only 36, not 48, independent results, we carried 
out the binomial test for N  36 and found the probability of 
6 or fewer violations by chance to be less than .0001.

The Variance Effect
Column 5 lists new/new (N/N) slopes for an evaluation 

of the variance effect. Of the 48 slopes, only 2 have a value 
of 1 or greater. Given the results of the binomial test for 
the mirror effect, no further test is needed for the variance 
effect. We have also listed the old/old (O/O) slopes. Of the 
48, only 4 have a value of 1 or greater.

The z-ROC Length Effect
Columns 7 and 8 list the z-ROC lengths of the W and S 

conditions, for an evaluation of the z-ROC length effect. Of 
the 48 pairs, all but 3 show (W)  (S). Again, no further 
test is needed for the statistical significance of the effect.

Standard Measures
Table 2 lists the measures—intercepts and slopes— 

derived from standard z-ROCs in which z old is plotted 
against z new for each of the 48 cases. The intercepts 
are indicators of accuracy, but they are not completely 

1992, Experiments 1 and 2).5 In most cases, the numeri-
cal data were available for analysis. For five of the studies 
(Elam, 1991; Gehring, Toglia, & Kimble, 1976; Gron-
lund & Elam, 1994; Stretch & Wixted, 1998b; Yonelinas, 
1994), proportions of responses were computed on the 
basis of the available ROC plots. In all cases, we used the 
group ROCs obtained by summing across the individual 
participants. In several cases, the experiments were facto-
rial. For example, Ratcliff, McKoon, and Tindall’s (1994) 
Experiment 3 tested both short versus long lists and single 
versus repeated presentations. We used the ROC data from 
each of these two variables, evaluating the effects of list 
length and repetition separately. In two studies (Gehring 
et al., 1976; Heathcote, 2003), more than one group was 
included in a single experiment. We combined the results 
for those groups in the summary.

In most cases, the experimental variable was within-
lists—for example, with the study and test lists each 
containing both high- and low-frequency words. In some 
cases, the experimental variable was between-lists—for 
example, the same participants studying separate short 
and long lists, each of which was followed by a test list 
(e.g., the pure lists of Ratcliff et al., 1994). Both of these 
paradigms satisfy the third requirement noted earlier: They 
furnish two identifiable classes of new items that can be 
paired with the two identifiable classes of old items.

On this basis, we obtained a total of 48 cases. Each was 
analyzed for hits and false alarms and fitted with z-ROCs, 
as in Figure 6. The z-ROCs permitted calculation of the 
measures presented in Tables 1 and 2. We used simple lin-
ear regression to obtain the slopes in Table 1 and both the 
slopes and intercepts in Table 2. It has been shown (Glan-
zer et al., 1999, p. 501) that statistics derived by using 
linear regression in this way differ negligibly from those 
derived from procedures that take account of error on both 
the x- and y-axes (e.g., maximum likelihood estimates).

All of the analyses are of group ROC data. We com-
pared the group findings with findings based on individ-
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Table 1 
Evidence of the Regularities: The Mirror, Variance (Slope), and z-ROC Length Effects

Mirror Pattern Slope Length

  SN  WN  WO  SO  N/N  O/O  S  W

A1w .14 .27 .59 .68 0.81 0.75 2.66 3.34
A2w .20 .36 .59 .64 0.90 0.70 2.66 3.15
D1w .23 .29 .62 .75 0.78 0.77 3.00 3.81
D2w .27 .27 .59 .72 0.88 0.93 2.56 2.81
E1l* .29 .42 .71 .75 0.87 0.90 2.40 2.71
E2l* .29 .46 .81 .86 0.85 0.70 1.95 2.41
E3r*^ .28 .29 .71 .89 0.97 1.03 2.60 2.58
G1w .30 .36 .59 .66 0.90 0.74 2.48 2.99
G2c .18 .32 .65 .68 1.00 0.79 3.66 3.91
G2w .22 .28 .63 .70 0.86 0.85 3.44 3.99
G3c .17 .25 .75 .85 0.84 0.71 2.88 3.63
G3w .18 .25 .78 .82 0.87 0.93 3.09 3.41
G4c .14 .26 .80 .81 0.93 0.74 2.58 3.02
G4e .18 .21 .69 .92 0.87 0.73 2.58 3.05
G4w .16 .23 .78 .83 0.86 0.84 2.58 2.98
G5w .23 .28 .61 .70 0.94 0.85 3.18 3.49
GE1l* .43 .50 .77 .80 0.93 1.10 1.96 1.97
GH1f .18 .19 .57 .85 0.60 0.54 2.27 3.83
GH2f .14 .19 .55 .91 0.55 0.42 1.78 3.55
GH3f .14 .20 .81 .98 0.49 0.55 1.69 3.32
GH4f .11 .26 .65 .87 0.71 0.54 2.12 3.26
GTp .20 .48 .77 .75 0.85 0.68 2.27 2.80
H1s .20 .13 .82 .89 0.91 0.95 2.95 3.19
H2o .12 .38 .83 .76 0.91 0.86 3.04 3.37
H3o .11 .32 .80 .76 0.97 0.78 2.75 3.06
HD1n .24 .25 .70 .73 0.99 0.99 2.99 3.04
HD1w .23 .27 .69 .74 0.90 0.85 2.85 3.18
HD2n .17 .21 .81 .84 0.95 0.97 3.13 3.24
HD2w .16 .22 .79 .86 0.92 0.86 3.04 3.34
M3r* .20 .23 .74 .85 0.91 1.04 2.42 2.55
R1t* .30 .35 .39 .54 0.81 0.70 3.09 3.99
R2t* .24 .31 .42 .64 0.77 0.64 2.96 4.10
R3l* .18 .32 .81 .83 0.91 0.81 2.37 2.76
R3t* .22 .28 .77 .86 0.84 0.85 2.31 2.73
R4t* .25 .24 .58 .67 0.93 0.89 2.47 2.70
R4w .19 .29 .59 .62 0.91 0.87 2.55 2.83
R5t* .21 .23 .74 .82 0.96 0.91 2.27 2.39
R5w .14 .30 .74 .81 0.89 0.76 2.17 2.53
R6t* .15 .18 .77 .84 0.98 0.94 2.00 2.07
R6x .12 .13 .67 .79 1.09 0.89 2.50 2.34
R6y .20 .25 .81 .86 0.95 0.93 1.89 2.02
R6z .08 .09 .76 .84 0.96 0.93 2.12 2.23
RS1t*^ .27 .31 .68 .76 0.99 0.97 1.83 1.85
RS2t*^ .13 .20 .79 .93 0.92 1.13 2.05 2.02
RS3t .22 .30 .64 .79 0.90 0.78 2.12 2.45
S4d .17 .44 .65 .90 0.40 0.45 1.29 2.99
SW2w .19 .25 .56 .73 0.86 0.62 3.31 4.26
Y2l* .08 .16 .75 .86 0.81 0.71 2.74 3.50

Note—Coding. The initial uppercase letters in each row indicate a study (as listed below), the number that follows 
indicates the experiment number, and the final lowercase letter indicates the experimental variable (also listed below). 
Thus, the listing “A1w” indicates Arndt and Reder (2002), Experiment 1, with word frequency as the variable. Itali-
cized numbers indicate violations of the three regularities we studied. *An experiment in which the variables oc-
curred between lists. ^A binary ROC experiment.

Studies. A  Arndt and Reder (2002); D  DeCarlo (2007); E  Elam (1991); G  Glanzer and Adams (1990); 
GE  Gronlund and Elam (1994); GH  Glanzer, Hilford, and Kim (2008); GT  Gehring, Toglia, and Kimble 
(1976); H  Heathcote (2003); HD  Heathcote, Ditton, and Mitchell (2006); M  Morrell, Gaitan, and Wixted 
(2002); R  Ratcliff, McKoon, and Tindall (1994); RS  Ratcliff, Sheu, and Gronlund (1992); S  Singer and Wixted 
(2006); SW  Stretch and Wixted (1998b); Y  Yonelinas (1994).

Variables. c  concreteness; e  encoding; f  familiarity; l  list length; n  neighborhood, number of words 
similar to the presented word; o  orthographic similarity; p  pictures versus words; r  repetition; s  semantic 
similarity; t  study time; w  word frequency; x  word pool; y  category; z  random (x, y, and z are different 
sets of words from Ratcliff et al., 1994).

Additional notes. A1 had a standard arrangement of new and old items, and also a set of similar new items, that differed 
from old test items only in their last letter, indicating singular or plural. The measures reported are based on the standard 
set. Analysis of the data including the similar items gave the same three regularities. H3 had another variable, category 
length, that was not included because it did not meet the requirement of producing a difference in accuracy. The mean d  
for the short length (4) was 1.45, for the long (12), 1.46 (both averaged across the similar and dissimilar list conditions). 
R3l had three levels of list length: 16, 32, and 64. We analyzed the short list length, 16, versus the long, 64.



442    GLANZER, HILFORD, AND MALONEY

Bias Effects
We noted earlier that the usual indicator of the mirror 

effect, the pattern of hits and false alarms, does not al-
ways give an accurate picture of the order of the underly-
ing means. The inaccuracy stems from the effects of bias. 
We consider now how bias—the tendency to favor “old” 
or “new” responses—affects the mirror effect. We also 
show that it has either no effect or only a slight effect on 
the other two regularities. To demonstrate this, we use ex-
amples from the equal-variance normal model.

There are two types of bias: general and specific. Gen-
eral bias occurs when individuals are generally conser-
vative or liberal in their responses to both conditions in 
a two-condition experiment. Such general bias would 
appear as individuals adopting a criterion in both con-
ditions to the left (liberal) or the right (conservative) of 
the intersection of the “old” and “new” distributions. If 
that is done, the mirror effect will be weakened or disap-
pear. For example, for the equal-variance normal model 
in Figure 2, if individuals adopted a general liberal bias, 
by setting c to 1 as the boundary between “yes” and 
“no” responses for both conditions, the following pattern 
would occur:

SN  .38  WN  .70  WO  SO  .93.

The mirror pattern is gone (violations underlined).
If they adopted a general conservative bias, by setting 

c to 1 for both conditions,

SN  WN  .07  WO  .31  SO  .62.

The mirror pattern is, again, gone. The variance effect and 
the z-ROC length effect, however, would still be present.

The other type of bias is differential bias, which occurs 
when individuals are more likely to say “yes” or “old” to 
one of the two classes or conditions. To show the effect of 
differential bias, we increased the prior probability for one 
of the distributions, here SO. We took the same parameter 
values for ,  as in the equal-variance normal model de-
picted in Figure 2, discussed earlier, and doubled the prior 
probability of SO, increasing its distribution by log 2. This 
would have the effect of making the response more liberal, 
not only for the single criterion in a yes–no test, but also 
for all criteria in a confidence rating test. The effects of 
such differential bias are shown in Figure 7. It again af-
fects only one of three regularities, the mirror effect. As 
can be seen, the mirror effect is gone from the array of 
distributions (panel B), with the SN and WN distributions 
close together. It therefore disappears from the consequent 
pattern of hits and false alarms:

SN  .32  WN  .31  WO  .69  SO  .90.

The shift in bias does not, however, change the variance 
effect (panel D), which remains at 0.57. It has a slight 
effect on the z-ROCs, with the z-ROC length effect main-
tained, as seen in panel C: (S)  3.22  (W)  5.66.

We can, however, counter the effects of bias on the mir-
ror effect so as to accurately display the positions of the 
underlying distributions. We can do that in several ways. 
First, we can do it by affecting bias directly: by instruc-

satisfactory indicators because they are affected by 
the unequal variances. They may be converted to de  
2   intercept/(1  slope) to take account of such effects 
(Wickens, 2002, p. 65). That conversion was carried out 
to obtain the des used in the correlations in the Addi-
tional Evidence for LR section below.

Columns 3 and 4 list the slopes for each of the W and S 
old/new z-ROCs. Comparison of the two finds that in only 
13 of the 48 pairs is the S slope greater than or equal to 
the W slope. The probability of that result occurring by 
chance is p  .001. This bears out the statement made 
earlier about the effect of d  on the variance of “old” dis-
tributions (see note 2).

Table 2 
Standard z-ROC Measures: Intercept (Accuracy)  

and Slope for Weak and Strong Conditions

Intercept Slope

  W  S  W  S

A1w 0.70 1.15 0.73 0.68
A2w 0.59 0.88 0.73 0.57
D1w 0.80 1.25 0.83 0.82
D2w 0.71 1.06 0.75 0.79
E1l* 0.70 1.18 0.86 0.87
E2l* 0.99 1.41 0.71 0.59
E3r*^ 0.96 1.74 0.90 0.97
G1w 0.54 0.80 0.92 0.76
G2c 0.75 1.15 0.90 0.71
G2w 0.79 1.15 0.83 0.82
G3c 1.13 1.53 0.78 0.65
G3w 1.18 1.50 0.71 0.75
G4c 1.37 1.59 0.87 0.69
G4e 1.16 1.98 0.87 0.74
G4w 1.33 1.66 0.79 0.78
G5w 0.78 1.09 0.72 0.66
GE1l* 0.70 0.95 0.76 0.92
GH1f 0.83 1.61 0.74 0.67
GH2f 0.77 1.87 0.76 0.57
GH3f 1.37 2.58 0.52 0.60
GH4f 0.92 1.81 0.78 0.60
GTp 0.78 1.38 0.99 0.80
H1s 1.50 1.65 0.66 0.69
H2o 1.15 1.65 0.86 0.83
H3o 1.15 1.43 0.81 0.66
HD1n 0.98 1.12 0.70 0.70
HD1w 0.94 1.16 0.72 0.68
HD2n 1.42 1.62 0.72 0.73
HD2w 1.33 1.71 0.75 0.70
M3r* 1.18 1.73 0.71 0.82
R1t* 0.08 0.52 0.98 0.85
R2t* 0.26 0.85 0.94 0.79
R3l* 1.09 1.51 0.83 0.74
R3t* 1.05 1.55 0.77 0.77
R4t* 0.73 0.93 0.79 0.76
R4w 0.63 0.93 0.77 0.74
R5t* 1.10 1.39 0.68 0.71
R5w 1.01 1.44 0.73 0.61
R6t* 1.37 1.62 0.72 0.68
R6x 1.20 1.41 0.62 0.52
R6y 1.43 1.71 0.82 0.81
R6z 1.40 1.65 0.56 0.55
RS1t*^ 0.86 1.25 0.84 0.83
RS2t*^ 1.53 2.33 0.71 0.90
RS3t 0.72 1.25 0.81 0.70
S4d 0.39 1.88 0.62 0.70
SW2w 0.66 1.09 0.87 0.64
Y2l* 1.30 1.72 0.64 0.54

Note—See the note to Table 1.
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nante (2002). Both removed the mirror effect in yes–no data 
by introducing operations that are the reverse of the op-
erations just discussed. We have considered increasing the 
difference in d s between conditions and decreasing bias 
effects directly. The dual-process studies did the opposite: 
They introduced operations that decreased the difference in 
d  between conditions and increased the bias difference.

Balota et al. (2002) carried out two experiments in 
which word frequency was varied. In Experiment 1, they 
tested five groups: young, young-old, old-old, very mild 
Alzheimer’s, and mild Alzheimer’s. The first four groups 
showed a word frequency mirror effect; the fifth did not. 
That group, however, also showed no difference in d s be-
tween the high- and low-frequency words (their Figure 2), 
so no mirror effect would be expected. In Experiment 2, the 
participants studied and were tested under either speeded 
or slow conditions. In the slow condition, the low- and 
high-frequency d s were 1.95 versus 1.20, and the bias 
indices c were .01 and .08 (slight difference in bias). In 
the speeded condition, the d s shrunk and converged to 1.0 
and 0.75, whereas the bias indices separated out to .10 and 

.12 (their Figure 7). The mirror effect disappeared. A 
similar pattern—a decrease in d  difference and increase 
in bias difference resulting from speeded study—was 

tions, payoffs, or changes in prior probability. We can also 
do it by increasing the difference in d  between the W and 
S conditions. For the example just given, if we increase 
the d  for S to 2.50, the mirror effect reappears, despite 
the bias:

SN  .16  WN  .31  WO  .69  SO  .94.

The other two regularities hold. There are other, more in-
formative, methods of determining the positions of the 
underlying distributions, despite bias. These methods 
require, however, the fuller information obtained from 
ROCs and are not relevant to the two-factor studies we 
discuss next, all of which are yes–no studies.

We have gone into the effects of bias in detail for two 
reasons. The first is because the literature survey in Table 1 
shows that the mirror effect is the weakest of the three 
regularities (shown in only 88% of the 48 cases). From the 
point of view of SDT, the violations of the mirror effect 
are due to the bias effects just demonstrated.

The second reason is that operations that counter the mir-
ror effect have been used to support special dual-process 
explanations of the mirror effect. We will consider two such 
studies in some detail: Balota, Burgess, Cortese, and Adams 
(2002) and Hirshman, Fisher, Henthorn, Arndt, and Passan-
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the intercepts corrected for the variance effect, de  2  
intercept/(1  slope), to produce the estimates dew and des. 
To test this relation, we correlated the new/new slopes in 
Table 1 with the ratio dew/des. Here and in the following sec-
tion, we use dew and des values derived from the intercepts 
in Table 2. The statistically significant correlation was .63, 
and a scatterplot of the results is shown in Figure 8.

z-ROC Length Ratio Correlation
We noted in the section on the equal-variance normal 

model that

 

l

l

( )

( ) .

W

S

W

S

5 1

5 1

d

d  

(25)

Given that 1  5 is the same for the W and S condi-
tions—that is, the individual maintains the same criteria 
for both—it follows that

(W)/ (S)  dS /dW. (26)

Therefore, given the complexity introduced by unequal 
variances, we would expect those ratios to be correlated 
but not equal. The scatterplot of this analysis is shown in 
Figure 9, with a statistically significant correlation of .43. 
That correlation is depressed by a single outlier, marked 
with a circle. When that outlier is excluded, the correla-
tion is .70.

DISCUSSION

Two alternatives to the SDT–LR view have been of-
fered in the literature. One is the familiarity–recollection 

found by Joordens and Hockley (2000) in their Experi-
ment 4. Again, the mirror effect disappeared.

Hirshman et al. (2002) compared the performance of 
control participants (injected with saline) and participants 
injected with an amnesia-inducing drug. The control par-
ticipants displayed a mirror pattern:

 SN  .28  WN  .42  WO  .55  SO  .61,

 dS  0.81, dW  0.35,

 cS  .18, cW  .25.

The drug participants, however, did not:

 SN  .25  WN  .38  WO  .43  SO  .37,

 dS  0.34, dW  0.13,

 cS  .50, cW  .25.

This pattern is the same as the one seen in Balota et al. 
(2002); the drug condition eliminated the mirror effect by 
shrinking the d  difference and increasing the differential 
bias.

These two-factor proposals abandon SDT in their final 
analyses. They do not take account of bias, but simply 
focus on raw hit and false alarm rates. To summarize, an 
operation that reduces the registration of items in memory 
will eliminate the mirror effect. This will allow any bias 
effects to play a strong role, which will yet further enhance 
this elimination.

Criterion Variability
Mueller and Weidemann (2008) recently investigated an 

important issue: the effect of criterion variability on signal 
detection results. Calculation of the effects of criterion 
uncertainty, however, results in a departure from linearity 
of the z-ROC and an underestimate of d . We checked for 
such effects (departures from linearity) in our data and 
found them to be slight. The three regularities, moreover, 
do not involve estimation of d . There is no indication that 
criterion variability has affected our conclusions.

ADDITIONAL EVIDENCE FOR LR

We can demonstrate still further evidence for LR deci-
sion in recognition memory by making use of two more im-
plications of  decisions: the correlation of the ratio dW/dS 
with the new/new slope, as well as the correlation of the 
inverse of that ratio, dS/dW, with the ratio of z-ROC lengths, 
(W)/ (S). In the following section, the basis of these cor-

relations is discussed, using the terms of the equal-variance 
normal model because that model is simple. The data we 
use, of course, are from the survey tables and are not tied to 
the equal-variance normal model, nor to any other.

New/New Slope Correlation
In the equal-variance normal model, Var( )  d 2. 

Therefore, the new/new slope is W/ S  dW/dS. In the 
case of the unequal-variance normal model, the terms are 
more complex but lead to the expectation that the new/new 
slope will be an increasing function of the ratio of accuracy 
measures for the W and S conditions. We used the ratio of 
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 frequency words are recollected, in general, better than 
high-frequency words. There is no such evidence. In fact, 
the available evidence is to the contrary (Gregg, 1976). Even 
if this explanation were viable, it faces other problems. As 
noted before, it is generally restricted to the word frequency 
mirror effect, and thus does not cover the 34 cases in Table 1 
that do not involve the word frequency effect. Of those 34, 
only 5 violate the mirror pattern. The probability of 5 or 
fewer violations in a set of 34 is, by a binomial test, p  
.00002. Furthermore, 4 of the experiments in Table 1 di-
rectly contradict the dual-process explanation. These are 
the experiments GH1, GH2, GH3, and GH4, which have 
the familiarity of names as their variable (Glanzer, Hilford, 
& Kim, 2008). With that variable, familiar (F) is strong and 
unfamiliar (U) is weak. Nevertheless, the mirror pattern 
was produced: FN  UN  UO  FO, or, as we have writ-
ten it before, SN  WN  WO  SO. If the dual-process 
explanation were correct, we should see the reverse effect 
on new items—namely, UN  FN or WN  SN.

Other investigators may be tempted to employ dual-
process explanations for other experiments with other vari-
ables, claiming that SN and WN start at different positions 
(see note 3). Such explanations, however, are ruled out by 
the data of the pure-list, between-list experiments of Elam 
(1991), Gronlund and Elam (1994), Ratcliff et al. (1994), 
Ratcliff et al. (1992), and Yonelinas (1994), listed in Table 1 
and marked with an asterisk. In those experiments, the two 
sets of new items were drawn at random from a single pool 
of items. There was no difference between the two sets, ex-
cept that they were paired in the test with old items that 
differed in accuracy. There are 14 such cases, with only one 
violation of the mirror pattern. The probability of one or 
fewer violations occurring by chance is p  .001.

Balakrishnan and Ratcliff (1996)  
Distance-From-Criterion Model

Balakrishnan and Ratcliff (1996) analyzed results from 
both mixed-list and pure-list two-condition experiments 
to argue against a signal detection model based on LR, 
which they labeled the “optimal decision model.” They 
argued instead for a distance-from-criterion model— 
essentially a strength model. Their model, however, does 
not account for the three regularities considered here. In 
fact, it is contradicted by two of them.

The mirror effect is demonstrated for the recognition 
data of their Experiment 1. They used pure lists with three 
levels of repetition and got a clear, triple mirror effect, 
listed in their Table 2:

 SN  .16  MN  .20  WN  .39   
 WO  .58  MO  .70  SO  .79,

where M is a moderate repetition condition. No explana-
tion was offered for this effect, which cannot be derived 
from a strength model without postulating additional 
mechanisms.

Their strength model also contradicts another demon-
strated regularity, the z-ROC length effect. Their model 
assumes that the participants have a “subjective likeli-
hood ratio,” which is an alias for the participants’ feeling 
of confidence in their response choices (Balakrishnan & 

explanation of the word frequency effect, and the other 
is the Balakrishnan and Ratcliff (1996) distance-from-
criterion model.

The Dual-Process  
(Familiarity–Recollection) Explanation

A number of investigators have explored the different 
roles of familiarity and recollection in memory. There is 
no conflict with SDT in finding that information from dif-
ferent sources is combined in recognition decisions. In 
fact, as noted earlier, the LR is designed to permit such 
combination. Some investigators have further proposed 
that two factors or processes, such as familiarity and rec-
ollection, explain the mirror effect (Arndt & Reder, 2002; 
Balota et al., 2002; Hirshman et al., 2002; Joordens & 
Hockley, 2000). Our proposal is that SDT produces the 
mirror effect; there is no need to assume any other mecha-
nism. We dealt with the dual-process proposal earlier, in 
the section on bias; now we consider it further.

The dual-process proposal, generally limited to the 
variable of word frequency, is based on the assumption 
of a strength decision axis without LR-SDT and its bias 
measure, and two further assumptions:

Assumption 1. Low-frequency words are less famil-
iar than high-frequency words. Therefore, the SN 
(low-frequency) distribution starts out lower on the 
(strength) decision axis than does the WN (high-
 frequency) distribution.

Assumption 2. Low-frequency words, when studied, 
are recollected better than high-frequency words. 
Therefore, the SO (low-frequency) distribution will 
overcome its initial disadvantage and surpass the WO 
(high-frequency) distribution on the upper reaches of 
the decision axis.

Assumption 2 is questionable. If it were valid, there 
should be some evidence from recall studies that low-
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knowledge being ascribed to the individual. Their account 
is in terms of the possible reinforcement history of the 
individual.

A Positive Note
Having gone over the objections to an LR approach, it is 

appropriate to quote a general argument in favor of it. The 
quotation responds to the objection to LR we have just 
discussed and is a prologue to a more complete theory of 
recognition memory.

As a psychological model, the likelihood-ratio proce-
dure gives a simple description of how decisions are 
made. From past experience the observer has a feel-
ing for the distribution of effects produced by stim-
uli from the two conditions. When a new stimulus 
is presented, the observer refers to these subjective 
distributions and decides which one is more likely to 
produce that stimulus. . . . The likelihood ratio gives 
a mechanism by which these complex systems [fa-
miliarity, medical data, eyewitness responses] can be 
reduced to comprehensible process descriptions. At-
tempts to define a dimension for such tasks often end 
up by restating a likelihood-ratio principle in other 
language. (Wickens, 2002, pp. 164–165)

Summary and Conclusions
The effects of recognition decisions based on LR have 

been shown at both the computational/theoretical and em-
pirical levels. Those effects include three regularities: the 
mirror effect, the variance effect, and the z-ROC length 
effect. The assumption that recognition memory is LR-
based brings together the three regularities into a single 
framework and also explains the relations between these 
regularities. The main message of this work is positive: that 
individuals carrying out recognition tasks carry them out 
efficiently. This is contrary to much recent work on cog-
nition that, as Gigerenzer and Murray (1987) have noted, 
emphasizes the inefficiency of cognitive functions.

AUTHOR NOTE

We thank the following colleagues: Geoff Iverson, who furnished 
derivations for the unequal-variance normal model; Kisok Kim, who 
wrote the initial programs for computing distributions; and Jason Arndt, 
Andrew Heathcote, Murray Singer, and John T. Wixted for furnishing 
numerical data for our analyses. Geoff Iverson’s derivations can be ob-
tained by writing to him at giverson@uci.edu. L.T.M. was supported 
by National Institutes of Health Grant NIH EY08266. Correspondence 
related to this article may be sent to M. Glanzer, Department of Psychol-
ogy, New York University, 6 Washington Place, New York, NY 10003 
(e-mail: mg@psych.nyu.edu).

REFERENCES

Arndt, J., & Reder, L. M. (2002). Word frequency and receiver op-
erating characteristic curves in recognition memory: Evidence for 
a dual-process interpretation. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 28, 830-842.

Balakrishnan, J. D., & Ratcliff, R. (1996). Testing models of deci-
sion making using confidence ratings in classification. Journal of 
Experimental Psychology: Human Perception & Performance, 22, 
615-633.

Balota, D. A., Burgess, G. C., Cortese, M. J., & Adams, D. R. (2002). 

Ratcliff, 1996, p. 617). Confidence in classification on 
any trial increases with the signed difference between the 
signal on that trial and a threshold value set by the indi-
vidual (p. 618). In summary,

 E  g(S  T ), (27)

where g( ) is an increasing function of its argument. We 
know, however, on the basis of the z-ROC length regu-
larity that individuals effectively rescale their confidence 
scales on the basis of d .

Most importantly, the critical test Balakrishnan and Rat-
cliff (1996) proposed to eliminate LR models fails, and in-
stead supports an LR model. They claimed, correctly, that 
for LR models the cumulative distributions for SO and 
WO items must cross (at the extreme right), and the cu-
mulative distributions for the SN and WN items must also 
cross (at the extreme left). See their Figures 3 and 4. These 
crossover effects are effects of variance. Their model in-
stead predicts no crossover—that is, no variance effect. 
Our data, however, show variance effects in both old/old 
slopes (44 out of 48 cases) and new/new slopes (46 out of 
48 cases). See Table 1.

A General Objection to LR
A frequent objection to LR as a basis for recognition 

memory decisions is that it requires too much knowledge 
on the part of the individual: distributions, probability 
theory, and computation of ratios. That objection con-
fuses the work that the individual does with the work of 
the theorist analyzing what the individual accomplishes. 
It is analogous to the claim that outfielders should not be 
able to determine the trajectory of a fly ball because they 
do not have the training, data, or time to solve the differ-
ential equations required.

A clear rebuttal of this objection has been given in de-
tail by Murdock (1998), pages 527–528. This objection, 
however, has been raised again recently by Criss and Mc-
Clelland (2006), who labeled the general SDT models that 
we have presented “fully informed likelihood models” and 
asserted that such models assume “that the memory sys-
tem knows the full statistical properties of the distribution 
of familiarity values associated with both the old and new 
stimuli used within each test condition of the experiment” 
(p. 457). They contrasted these “fully informed” models 
with the “subjective likelihood models” of McClelland 
and Chappell (1998) and Shiffrin and Steyvers (1997). 
These two types of models are not in competition, how-
ever; they are complementary. Subjective likelihood mod-
els are proposals as to how the individual does the compu-
tations that allow SDT to function the way it does. These 
models function at a different theoretical level from the 
fully informed models, much as a model of the neuronal 
network doing subjective likelihood computations is at 
still another theoretical level. SDT defines the structures 
that any model of the underlying processes must satisfy.

Before closing, let us note a third proposal about the 
mechanisms that underlie SDT. Wixted and Gaitan (2002) 
have offered a persuasive account of how a functioning 
LR decision system might be generated without extensive 



LIKELIHOOD RATIO DECISIONS IN MEMORY    447

Mueller, S. T., & Weidemann, C. T. (2008). Decision noise: An expla-
nation for observed violations of signal detection theory. Psychonomic 
Bulletin & Review, 15, 465-494.

Murdock, B. B. (1998). The mirror effect and attention-likelihood 
theory: A reflective analysis. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 24, 524-534.

Ratcliff, R., McKoon, G., & Tindall, M. (1994). Empirical general-
ity of data from recognition memory receiver-operating characteristic 
functions and implications for the global memory models. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 20, 
763-785.

Ratcliff, R., Sheu, C.-F., & Gronlund, S. D. (1992). Testing global 
memory models using ROC curves. Psychological Review, 99, 518-
535.

Royall, R. M. (1999). Statistical evidence: A likelihood paradigm. 
Boca Raton, FL: Chapman & Hall.

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition 
memory: REM—retrieving effectively from memory. Psychonomic 
Bulletin & Review, 4, 145-166.

Singer, M., & Wixted, J. T. (2006). Effect of delay on recognition 
decisions: Evidence for a criterion shift. Memory & Cognition, 34, 
125-137.

Stretch, V., & Wixted, J. T. (1998a). Decision rules for recognition 
memory confidence judgments. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 24, 1397-1410.

Stretch, V., & Wixted, J. T. (1998b). On the difference between 
strength-based and frequency-based mirror effects in recognition 
memory. Journal of Experimental Psychology: Learning, Memory, & 
Cognition, 24, 1379-1396.

Wickens, T. D. (2002). Elementary signal detection theory. Oxford: 
Oxford University Press.

Wixted, J. T., & Gaitan, S. C. (2002). Cognitive theories as reinforce-
ment history surrogates: The case of likelihood ratio models of human 
recognition memory. Animal Learning & Behavior, 30, 289-305.

Yonelinas, A. P. (1994). Receiver-operating characteristics in recogni-
tion memory: Evidence for a dual-process model. Journal of Experi-
mental Psychology: Learning, Memory, & Cognition, 20, 1341-1354.

NOTES

1. The item information X is a random variable, and for it we use up-
percase. We use lowercase x in the probability density function f (x) for 
the values that X can take.

2. In recognition memory, a second factor—other than LR—affects 
the size of the “old” distribution variance. An increase in accuracy also 
produces an increase in the variance of the “old” distribution in com-
parison with the corresponding “new” distribution. This effect is seen in 
standard old/new z-ROCs, which generally have slopes less than 1 (Glan-
zer, Kim, Hilford, & Adams, 1999; Mickes, Wixted, & Wais, 2007). Evi-
dence of this effect will be presented later, in Table 2. This second factor 
makes the interpretation of the old/old z-ROC more complicated than the 
interpretation of the new/new z-ROC.

3. Some theorists, using a familiarity decision axis, object to this 
placement. However, we will show that the regularities hold for data in 
which it cannot be argued that SN and WN differ in familiarity.

4. Ratcliff, McKoon, and Tindall (1994) furnished ROC data for two 
kinds of lists: “pure” and “mixed.” We only use the data from the pure 
lists in the following survey. With pure lists, the participant studies lists 
under two different conditions—for example, some lists consist solely 
of repeated items and some solely of singly presented items. Each study 
list is then followed by a test list. Thus, the new items can be designated 
as either strong or weak. In mixed lists, the participant studies items 
from both conditions within one list—for example, some study items 
are given singly and some are repeated. The participant has one test list 
after each study list. With this procedure, there is no way to differentiate 
items in the test list as strong new or weak new. Therefore, mixed lists 
do not permit evaluation of two of the regularities: the mirror effect and 
the variance effect.

5. A binary ROC is generated by giving a participant several different 
lists, with a different biasing condition for each list.

The word-frequency mirror effect in young, old, and early-stage Alz-
heimer’s disease: Evidence for two processes in episodic recognition 
performance. Journal of Memory & Language, 46, 199-226.

Criss, A. H., & McClelland, J. L. (2006). Differentiating the dif-
ferentiation models: A comparison of the retrieving effectively from 
memory model (REM) and the subjective likelihood model (SLiM). 
Journal of Memory & Language, 55, 447-460.

DeCarlo, L. T. (2007). The mirror effect and mixture signal detection 
theory. Journal of Experimental Psychology: Learning, Memory, & 
Cognition, 33, 18-33.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification 
(2nd ed.). New York: Wiley.

Elam, L. E. (1991). Variance of memory-strength distributions and the 
list-length effect. Unpublished bachelor’s thesis, University of Okla-
homa, Norman.

Gehring, R. E., Toglia, M. P., & Kimble, G. A. (1976). Recognition 
memory for words and pictures at short and long retention intervals. 
Memory & Cognition, 4, 256-260.

Gigerenzer, G., & Murray, D. J. (1987). Detection and discrimina-
tion: From thresholds to statistical inference. In G. Gigerenzer & D. J. 
Murray (Eds.), Cognition as intuitive statistics (pp. 29-204). Hills-
dale, NJ: Erlbaum.

Glanzer, M., & Adams, J. K. (1985). The mirror effect in recognition 
memory. Memory & Cognition, 13, 8-20.

Glanzer, M., & Adams, J. K. (1990). The mirror effect in recogni-
tion memory: Data and theory. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 16, 5-16.

Glanzer, M., Adams, J. K., Iverson, G. J., & Kim, K. (1993). The regu-
larities of recognition memory. Psychological Review, 100, 546-567.

Glanzer, M., Hilford, A., & Kim, K. (2008). Signal detection theory, 
the mirror effect, and familiarity. Unpublished paper.

Glanzer, M., Kim, K., Hilford, A., & Adams, J. K. (1999). Slope of 
the receiver-operating characteristic in recognition memory. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 25, 
500-513.

Green, D. M., & Swets, J. A. (1974). Signal detection theory and 
psychophysics (Reprint with corrections). Huntington, NY: Krieger. 
(Original work published 1966)

Gregg, V. (1976). Word frequency, recognition and recall. In J. Brown 
(Ed.), Recall and recognition (pp. 183-216). New York: Wiley.

Gronlund, S. D., & Elam, L. E. (1994). List-length effect: Recognition 
accuracy and variance of underlying distributions. Journal of Experi-
mental Psychology: Learning, Memory, & Cognition, 20, 1355-1369.

Heathcote, A. (2003). Item recognition memory and the receiver oper-
ating characteristic. Journal of Experimental Psychology: Learning, 
Memory, & Cognition, 29, 1210-1230.

Heathcote, A., Ditton, E., & Mitchell, K. (2006). Word frequency 
and word likeness mirror effects in episodic recognition memory. 
Memory & Cognition, 34, 826-838.

Hirshman, E., Fisher, J. Henthorn, T., Arndt, J., & Passannante, A. 
(2002). Midazolam amnesia and dual-process models of the word-
 frequency mirror effect. Journal of Memory & Language, 47, 499-516.

Johnson, N. L., & Kotz, S. (1970a). Continuous univariate distribu-
tions (Vol. 1). New York: Wiley.

Johnson, N. L., & Kotz, S. (1970b). Continuous univariate distribu-
tions (Vol. 2). New York: Wiley.

Joordens, S., & Hockley, W. E. (2000). Recollection and familiarity 
through the looking glass: When old does not mirror new. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 26, 
1534-1555.

McClelland, J. L., & Chappell, M. (1998). Familiarity breeds dif-
ferentiation: A subjective-likelihood approach to the effects of experi-
ence in recognition memory. Psychological Review, 105, 724-760.

Mickes, L., Wixted, J. T., & Wais, P. E. (2007). A direct test of the 
unequal-variance signal detection model of recognition memory. Psy-
chonomic Bulletin & Review, 14, 858-865.

Morrell, H. E. R., Gaitan, S., & Wixted, J. T. (2002). On the nature 
of the decision axis in signal-detection-based models of recognition 
memory. Journal of Experimental Psychology: Learning, Memory, & 
Cognition, 28, 1095-1110.

(Continued on next page)



448    GLANZER, HILFORD, AND MALONEY

APPENDIX A 
Equal-Variance Normal Model

In an old–new recognition task, the information available is assumed to be a random variable X whose distri-
bution for new items is
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whereas its distribution for old items is
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Without loss of generality, we can set   1, N  0, and d   O, so that
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We compute the log-likelihood criterion  as a function of the strength criterion c,
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producing Equation 7, a linear equation, whose inverse is
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which is Equation 8. As noted in the text, we refer to these two equations as the transfer equation and its inverse.
Suppose that criteria are set in terms of a fixed log-likelihood criterion , independent of d , and consider 

what happens to the criteria c when we change d1 to d2. We can compute the “new” criterion c  by combining 
Equations A5 and A6, written in terms of d1 to d2, respectively:
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This equation describes a linear expansion or compression around a fixed point. If d1  d2, the effect is expan-
sive; if d1  d2, it is compressive. This compression or expansion produces the z-ROC length effect.

On each trial, the log-likelihood ratio   (X ) is a random variable that depends on the strength random 
variable X. We can use the transfer equation to characterize its distribution on both “new” and “old” trials by 
first noting that
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Since X is normally distributed and (X ) is a linear transformation of X, (X ) is also normally distributed. Tak-
ing expected values when X is drawn from the “new” distribution fN(x),
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[with E(X | N)  0] and
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APPENDIX A (Continued)

[with E(X | O)  d ]. Here we have derived Equation 16.
We derive Equation 17 similarly, by taking the variance of the terms in Equation A8 to get

 
Var Var Var( ) ( ) ,d X d d X d

2
2 2

2  
(A11)

since Var(X )  1 for both old and new items.

APPENDIX B 
Unequal-Variance Normal Model

As before, the information available in an old–new recognition task is assumed to be a random variable X 
(“evidence variable”) whose distribution for new items is
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(B1)

whereas its distribution for old items is
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(B2)

Without loss of generality, we can set N  1 and N  0. We can further simplify the notation by letting d  
O and   O  O/ N, so that
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(B3)

and

 
f x e

x d

O( ) .
( )
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2

2

22

 
(B4)

Note that we are writing d and not d  in the unequal-variance case, to avoid confusion.
As in the equal-variance case, we first derive the transfer equation (c) from any choice of strength criterion c 

to the corresponding log-likelihood criterion . We then use the transfer equation (c) to characterize the distri-
bution of   (X ), as in the equal-variance case. The transformation (c) is quadratic, and the distribution of 

 will be that of a noncentral 2 (Johnson & Kotz, 1970b, chap. 28). This allows us to characterize its expected 
value and variance. See also the discussion on pages 62ff of Green and Swets (1966/1974).

The transformation (c) need not have an inverse or a unique inverse for every choice of , but we can invert it 
over a large enough range of values for our purposes. If, for example, we plot (c) versus c with d  1 and   1.2, 
the resulting plot is a parabola with a minimum at the c  2.27 line. Whereas the function (c) as a whole is not 
invertible, it is monotonically increasing, and therefore invertible, over the range c  ( 2.27, ), the part of the 
real line to the right of the minimum. If we superimpose the two distributions, the strength variable will rarely be 
outside of this interval on both “old” and “new” trials. In the remainder of this section, we derive (c), the location 
of its minimum, and the conditional means and variances of  for both “old” and “new” trials.

To begin,
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and (c) is part of a quadratic equation in c that also depends on d, —that is, the curve
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(B6)

which we rewrite as

 0 2Ac Bc C( ), (B7)

with
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Equation B7 depends on  through the coefficient C( ).
When 2  1 (the case of interest here), the parabola has a single minimum at c*  B/2A and is monotonically 

decreasing on the interval ( , c*) and monotonically increasing on the interval (c*, ). It is easy to show that

 
c d

2 1  
(B9)

and that, for example, c*  2 whenever 2( 2  1)  d. This inequality need not always hold in old–new rec-
ognition experiments, but when it does, the transfer equation is invertible over a range that includes the strength 
variable X on most trials.

Next, we solve for c( ) given . Since Equation B7 is quadratic, there can be 0, 1, or 2 choices of c that cor-
respond to any choice of ; we denote the two possible solutions as c ( ) and c ( ) and refer to them collectively 
as c ( ). Then,
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(B10)

and it is evident that c ( ) is the inverse of (c) over the interval (c*, ) when 2  1 and, therefore, A  0. See 
Figure B1.
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Figure B1. An example of the transfer function for the unequal-
variance normal model. We plot log-likelihood ratio criterion (c) 
versus the strength criterion when the “new” distribution is nor-
mal with mean 0 and standard deviation 1 and the “old” distribu-
tion is normal with mean 1 and standard deviation 1.2. The plot 
of the transfer function is a parabola, and we superimpose the 
“old” and “new” distributions on the plot for convenience (both 
are scaled in the vertical direction to make them more readily in-
terpretable). The function (c) reaches its minimum at c  2.27, 
marked by a vertical line. It is monotonically increasing to the 
right of this minimum.

The solution exists only if the discriminant B2  4AC( )  0, which is equivalent to
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2 2
2 23
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(B11)

This limit corresponds to the minimum of the parabolic function (c). We can readily repeat the derivations 
above for the case 2  1, where (c) is now a downward-facing parabola with a single maximum. However, 
the case 2  1 captures the old–new recognition experiments considered in the text. See also the discussion on 
pages 62ff of Green and Swets (1966/1974).

Now that we have the transfer function (c) and a partial inverse c ( ), we can combine them to model how 
the criteria c, as determined by fixed log-likelihood criteria, vary as d or  vary. That is, if c corresponds to a 
log-likelihood criterion , with parameters d1, 1, and c  corresponds to the same log-likelihood criterion, but in 
a different experimental condition with parameters d2, 2, then the functional relation between c and c  is
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 c   c2 [ 1(c)], (B12)

where we add subscripts for c2 ( ) and 1( ) to emphasize that they correspond to different experimental condi-
tions with parameters d2, 2 and d1, 1, respectively.

If this transformation is approximately linear, we would get an approximate z-ROC length effect. If it is 
monotonically increasing or decreasing, we would get a qualitative z-ROC effect exhibiting length changes, but 
not uniformly. For convenience, we rewrite
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where Ai, Bi are defined by analogy to A, B above, and
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Then, we have
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We wish to substitute Equation B13 into Equation B15. The resulting function controls the mapping of criterion c, 
in the condition with parameters d1, 1, to criterion c , in the condition with parameters d2, 2. We are interested in 
the range over which both functions are monotonically increasing, the interval (c12

max, ), where c12
max  max{c1

*, c2
*}. 

Over this range, it is obvious that the composition of one transfer function and the inverse of the other, restricted to 
(c12

max, ), is monotonically increasing. We can verify this result by computing the derivative

 

c
c

A c B

B A D

2

4

1 1

2
2

2 2

.

 

(B16)

Since Ai  0, i  1, 2,
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(B17)

and since c  c1
* over the interval (c12

max, ), we have shown that c / c  0, and the mapping is monotonically in-
creasing. We might expect that combining a branch of a parabola with the inverse over a branch of a second parabola 
might lead to a roughly linear result over the range of parameters typical of recognition memory tasks. See Figure B2. 
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Figure B2. Two transfer functions for the unequal-variance 
normal model. Both are invertible over the interval (c12

max, ). The 
series of arrows illustrate the effect of applying one transfer func-
tion and then the inverse of the other. This composition of func-
tions returns the original value c0 when evaluated at c0 (where the 
curves cross). When evaluated at other points, away from c0, the 
composition of functions results in a compression toward c0. This 
compression, illustrated for two points and in the figure, is the 
z-ROC length effect.
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The composition of two transfer functions over the range (c12
max, ) is a transformation with a fixed point c0. The net 

effect of the composition is to move points on either side of c0 toward c0: Thus, it is a compressive transformation. 
This compression is responsible for both the z-ROC length effect and the mirror effect.

If we substitute the random strength variable X into (c), we have the random variable that represents the log-
likelihood ratio on any single trial, (X )  AX 2  BX  C , where A, B are as above and

 
C d 2

22
log .

 
We can complete the square to get

(X )  A(X   c*)2  C , (B18)

where A is as before; c*  d/( 2  1), the previously derived criterion value at the minimum; and
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When the stimulus is new, X is normally distributed with mean 0 and variance 1. (X ) is then a linear trans-
formation of K  (X  c*)2, a noncentral 2 variable with one degree of freedom and noncentrality parameter 
(c*)2 (Johnson & Kotz, 1970b, chap. 28). The mean of K is (c*)2  1, and the variance is 4(c*)2  2 (Johnson & 
Kotz, 1970b, p. 134). We can then compute

 E(  | N)  A[(c*)2  1]  C  (B20)

and

 Var(  | N)  A2[4(c*)2  2]. (B21)

A key point is that both the mean and variance depend on d only through c*, and it is easy to show that each is 
therefore an increasing function of d, since (c*)2 is proportional to d2.

When the stimulus is old, the random variable X is distributed as a normal random variable with mean d and 
variance 2. Then, Z  (X  d )/  is a normal random variable with mean 0 and variance 1. We substitute X  

Z  d in Equation B18 to get

  A (Z  c*)2  C , (B22)

where
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and (X ) is a linear transformation of a noncentral 2 random variable with one degree of freedom and noncen-
trality parameter ( c*)2. Therefore,

 E(  | O)  A [( c*)2  1]  C  (B24)

and

 Var(  | O)  A 2[4( c*)2  2]. (B25)

Again, both depend on d only through ( c*)2, and both are therefore increasing functions of d.

APPENDIX C 
Binomial Model

Suppose that the noise and signal distributions are both binomial, with probability p1 and p2, respectively, and 
sample size n. Then, the likelihood functions are (for i  1, 2),
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n
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where we denote the strength variable (previously denoted X ) by n. The corresponding log-likelihood functions 
are

 
G n

N

n
n p N n pi i i( ) log log ( ) log ,1

 
(C1)

and the log-likelihood ratio in favor of signal is

12(n)  L2(n) – L1(n)  A12n  B12, (C2)

where
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The transfer function is then just

12(c)  A12c  B12, (C3)

where, however, the criterion c takes on only integer values.
Thus, the transfer function 12(c) is a linear transformation of c, just as in the equal-variance Gaussian case. 

When p2  p1, it is easy to show that A12  0. The slope A12 does not depend on the sample size N, but the 
intercept does.

Now, let us introduce a second signal distribution that is binomial with probability p3 (the noise distribution 
is the same). For convenience, we denoted the transfer function above 12(c) to make its dependence on p1, p2 
explicit. We redo the derivation above, but with the variable n , to get

13(c)  A13c  B13, (C4)

where
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Now, suppose that the same log-likelihood ratio criteria are used for both signal detection tasks. The relation 
between a criterion c in the first task and the corresponding criterion c  in the second is the composition of two 
linear transformations, and therefore a linear transformation that can be written in the form

 c   13
–1[ 12(c)]  (c – ), (C5)

where
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(C6)

where

 
lo( ) logp

p
p1  

is the log-odds, or logit, function of p. The intercept is
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Equation C7 describes a z-ROC length effect in which criteria are contracted or expanded around the fixed cri-
terion  when we switch from p2 to p3. The logit function is monotonically increasing, and we can use this fact 
to prove that if p1  p2  p3, then   1, and the z-ROC length effect is expansive. If p1  p3  p2, the effect 
instead is compressive. If we let qi  1 – pi,
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and
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APPENDIX E 
The General Case

The derivations in the unequal-variance normal case that culminated in Figure B2 can be generalized. Al-
though the transfer function (c) in the unequal-variance normal case had no inverse, we could find an interval 
C  (c*, ) over which the transfer function was invertible and that contained all but a small proportion of both 
the “old” and “new” probability densities. We can generalize these results to state necessary conditions under 
which an SDT model with arbitrary distributions will exhibit the first and third regularities discussed.

We can define an SDT model with “old” and “new” distributions denoted as fO(x) and fN(x), respectively, to 
be -invertible with respect to an open interval C  (c, d ) if and only if

 
1 f x dx

C
O( )

 
(E1)

and

 
1 f x dx

C
N ( )

 
(E2)

for a specific choice of   0. More generally, in a signal detection problem involving more than two distri-
butions (conditions), the problem is -invertible over an interval C if and only if all transfer functions satisfy 

APPENDIX D 
Exponential Model

The exponential distribution is
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(D1)

the expected value of the corresponding exponential random variable X is  and its variance is 2 (Johnson & 
Kotz, 1970a, chap. 18). We model the distribution of the evidence variable on “old” trials by an exponential 
with parameter O and on “new” trials by an exponential with parameter N. We will typically choose N  O. 
The log-likelihood ratio is then

(x)  ( N
1  O

1)x  log( O/ N), (D2)

which is invertible when N  O. Consequently, we can write the transfer equations as

(c)  ( N
1  O

1)c  log( O/ N) (D3)

and, when N  O,
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On “old” trials,   (X ) is just a linear transformation of an exponential variable with parameter O, and
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and
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We can simplify these equations by letting   O/ N, so that

 E(  | O)    log( )  1 (D7)
and
 E(  | N)  1  log( )  1. (D8)

In the “old” case, (X ) is an exponential with parameter     1 plus the constant log( ), and the added 
constant has no effect on the variance, which is just 2:

 Var(  | O)  (   1)2 (D9)
and
 Var(  | N)  (1  1)2. (D10)

The case of greatest interest for us is N  O, so that   1 and

 E(  | O)  E(  | N) (D11)
and
 Var(  | O)  Var(  | N); (D12)

that is, the evidence variable on “old” trials is on average greater than that on “new” trials, and its variance is 
also greater. Moreover, Equations D5–D8 are all increasing functions of . The three regularities follow from 
the equations above, just as in the equal-variance normal case.
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conditions analogous to Equations E1 and E2. The value   0 represents the experimenter’s tolerance for evi-
dence variables that fall outside the interval C in which all transfer functions are invertible. We found that in the 
unequal-variance normal case, we could choose a value of  so small that the effect of evidence variables falling 
outside the interval C  (c*, ) was negligible. Of course, in the equal-variance case we can select C  ( , ) 
and any value of   0, since the linear transfer functions are invertible across any interval.

We also found that, for conditions typical of recognition memory experiments in the unequal-variance case, the 
shallow parabolas crossed only once over the interval C and that the combination of any transfer function and the in-
verse of any other over C produced an approximately linear function. We can generalize this property as follows.

Let i(c), i  1, 2, denote two transfer functions. The SDT model is fixed-point monotone for i(c), i  1, 2, 
over an interval C if there is an interval (c, d ) such that 1(c) and 2(c) are both invertible over (c, d ) and the dif-
ference 1(c)  2(c) has precisely one zero over the interval, at c0, with a change of sign at c0. The last condition 
excludes the trivial cases in which 1(c)  2(c) over the entire interval or 1(c)  2(c).

If the last condition above is satisfied, then either 1(c)  2(c) for c  c0 and 1(c)  2(c) for c  c0 or 1(c)  
2(c) for c  c0 and 1(c)  2(c) for c  c0. We illustrate the former case in Figure E1, and without loss of generality, 

we consider only this case. The other case follows if we simply exchange the labels “1” and “2” on 1(c) and 2(c).
With the restriction in Figure E1, 2

1
1(c) is a bijective mapping of (c, d ) onto (c , d ) with an inverse 

1
1

2(c) restricted to the interval (c , d ). Note that the range and domain of 2
1

1(c) will be different unless 
1(c)  2(c) and 1(d )  2(d ).

We add one last technical assumption, that 1(c), 2(c), and their inverses are continuous and therefore map 
open intervals to open intervals. We need this assumption to ensure that the range of 1(c) is an open interval 
whose image under the inverse map 2

1( ) is also an open interval. It is then evident that the transfer function 

2
1

1(c) has a unique fixed point at c0  (c , d ) and is compressive around this fixed point.
Theorem. Suppose that with the notation above, the transfer functions 1(c), 2(c) are fixed-point monotone 

across the interval C  (c, d ) with fixed point c0. We assume that the transfer functions are continuous with 
continuous inverses across C. Without loss of generality, we can assume that 1(c)  2(c) for c  c0 and 1(c)  

2(c) for c  c0. We define the interval C   (c , d ) as above, as the inverse image under 2 of the range of 1: 
C   2

1[ 1(C )]. Then, 2
1

1(c) is well defined over the interval C  (c, d ), has a fixed point c0, and is com-
pressive about c0. The composite function 1

1
2(c) is well defined over the interval C   (c , d ), has a fixed 

point c0, and is expansive about c0.
Clearly, C   C, and if 1(c), 2(c) are -invertible with respect to C , then we can expect that the mirror effect 

and the z-ROC length effect will occur for the SDT model with the specified transfer functions.
The derivations given in these appendices provide some insight into the connection between LR models and 

both the mirror effect and the z-ROC length effect. We do not have comparable results for the new/new variance 
effect, which deserves further research.

c

(c
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c
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c c d d

2
(c)

1
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Figure E1. Two transfer functions in the general case. Given trans-
fer functions 1(c), 2(c) that are invertible over an interval (c, d) 
and that cross precisely once in that interval, at c0, we show that 
the composite functions 1

1  2(c) and 2
1  1(c) are compressive 

or expansive transformations around the fixed point c0. This proof 
generalizes the properties of the unequal-variance normal model to 
a wider range of signal detection models. See the text for details.
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