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Individuals extract a wealth of information from another’s face, 
including social categories such as sex, race, and emotion. The tra-
ditional view is that each social category dimension is represented 
independently1,2, which is sensible as social category dimensions are 
indeed all distinct and orthogonal in reality. Recent research, how-
ever, has questioned the independence of social category dimensions, 
instead arguing that they may be inherently intertwined.

Current computational models posit strong interdependence 
between social category representations because shared conceptual 
knowledge (i.e., stereotypes) related to two ostensibly unrelated cat-
egories causes them to become fundamentally entangled3,4. These 
models treat the visual perception of social categories as the end 
result of lower-level face processing and higher-order social cogni-
tion, including stereotypes, mutually constraining one another until 
a ‘compromise’ is achieved over time. As facial cues activate catego-
ries, categories activate related stereotypes; the stereotypes, in turn, 
constrain initial category activation itself, while categories and stere-
otypes recurrently pass activation back and forth3,4. Accordingly, the 
extraction of one category dimension (e.g., sex) will activate stere-
otypical associations that in turn bias the perception of other cat-
egory dimensions (e.g., race). To the extent that two social categories  
(e.g., Male and Black) share stereotypical associations (e.g., 
Aggressive), those social categories themselves may become linked, 
even down to the level of visual perception3–5.

Previous behavioral studies have documented how shared stere-
otypical associations link various categories together and bias percep-
tual judgments, including sex and race (Black–Male, Asian–Female)5, 
sex and emotion (Male–Angry, Female–Happy)6, and race and emo-
tion (Black–Angry)7. For example, Black and Male stereotypes tend 
to overlap (Aggressive), just as Asian and Female stereotypies tend 
to overlap (Docile). Accordingly, previous studies have shown that 
perceptions of Black male and Asian female faces are facilitated, while 

perceptions of Asian male and Black female faces are impaired3,5. 
However, despite growing behavioral evidence and support from 
recent computational models3, the neural basis of any such inter-
twined structuring of social categories is unknown.

Neural patterns in the fusiform gyrus (FG) have been shown to rep-
resent faces8 and distinguish their social categories9. Whereas areas in 
early visual cortex (EVC) are more responsive to a face’s featural infor-
mation, FG representations are more responsive to a face’s categorical 
distinctions10. Although theoretically predicted3,5, it remains an open 
question whether stereotypes’ entanglement of social categories could 
impact perceptual representations of a face in the FG.

Numerous studies have implicated the orbitofrontal cortex (OFC) 
in modulating perceptions of facial and object stimuli by integrating 
perceptual representations (for example, in the FG) with top-down 
expectations activated by contextual or associative details11,12. The 
OFC has also been linked to the integration of facial and contextual 
cues in social categorization11, the retrieval of person knowledge13, 
and the access of implicit stereotypes14,15. These studies suggest 
that the OFC may help integrate a face’s social category cues with 
top-down expectations about those cues, such as those generated by 
stereotypical associations. The OFC could then possibly help bias FG 
representations of a face’s categories in line with stereotypical associa-
tions and contribute to entangled perceptions.

In two functional magnetic resonance imaging (fMRI) studies, sub-
jects passively viewed (Fig. 1a and Supplementary Fig. 1a) compu-
ter-generated faces that varied in gender (Male, Female), race (Black, 
White, Asian), and emotion (Angry, Happy), resulting in 12 category-
combination conditions (Supplementary Fig. 2b). Outside the scanner,  
subjects completed a mouse-tracking task requiring speeded cat-
egorizations of all faces by gender, race, and emotion (Fig. 1b and 
Supplementary Fig. 1b). Mouse-tracking is a well-validated measure 
of how multiple social categories activate and resolve over hundreds 
of milliseconds during real-time categorization. During two-choice 
categorization tasks (for example, Male vs. Female), deviation in a 
subject’s hand trajectory toward each category response provides an 
indirect measure of the degree to which that category was activated 
during perception (Fig. 1b and Supplementary Fig. 1b). If stereotypes 
link one category to another (e.g., Black to Male), subjects’ perceptions 
are biased toward that category and, consequently, their hand trajec-
tories deviate toward that category response in mouse-tracking tasks. 
Thus, this task measured biased similarities between social categories 
in subjective perceptions (e.g., Black–Male).

To capture inter-category similarities between all category pairs, 
dissimilarity matrices (DMs) were generated at multiple levels (stere-
otype knowledge, subjective perceptions, neural patterns) (Fig. 2a 
and Supplementary Fig. 2), and their correspondence was assessed 
using representational similarity analysis (RSA)16 (see Online 
Methods). In study 1 (n = 17 subjects), the mouse-tracking data were 
used to construct a 12 × 12 dissimilarity matrix (‘subjective DM’),  
characterizing the similarity or dissimilarity of each condition pair 
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(for example, similarity of Happy–Asian–Female to Happy–Asian–
Male; see Online Methods; Supplementary Fig. 2b). A separate 
stereotype content task, in which each category was assessed for its 
conceptual relationship with a large set of traits, was conducted on 
independent raters and used to construct a 7 × 7 ‘stereotype DM’ 
(Fig. 2a). A comparison of similarity values (see Online Methods) 
within this stereotype DM revealed several biased similarities consist-
ent with prior research (Supplementary Table 1), including sex and 
race (Black–Male, Asian–Female)5, sex and emotion (Male-Angry, 
Female-Happy)6, and race and emotion (Black–Angry)17. For behav-
ioral analyses, the 12 × 12 subjective DM (based on condition pairs) 
was averaged into a 7 × 7 subjective DM based on categories (Fig. 2a  
and Supplementary Fig. 2c,d). As hypothesized, RSA confirmed 
that the subjective DM was significantly predicted by the stereotype 
DM (ρ(19) = 0.47, P = 0.023), indicating that conceptual associations 
between social categories were reflected in how those categories were 
subjectively perceived (Fig. 2a and Supplementary Fig. 3).

Our neuroimaging analyses examined the neural basis of such 
entangled perceptions by performing a whole-brain searchlight 
RSA throughout each subject’s functional data (P < 0.05, corrected), 
identifying cortical regions where the neural-pattern similarity of 
social categories was predicted by category similarity observed in the 
mouse-tracking data (subjective DM). As hypothesized, this analysis 
revealed neural-pattern similarity in the right FG (rFG) and OFC 
that was significantly predicted by the subjective DM (Fig. 2b and 
Supplementary Table 2).

As argued, the biases observed in study 1 may be driven by shared 
top-down stereotypical associations, an idea that was supported by sig-
nificant correlation between subjective and stereotype DMs (Fig. 2a  
and Supplementary Fig. 3). However, it is also possible that such biases 
are inherent in the categories’ bottom-up visual features themselves. 
Indeed, significant pattern similarity was additionally observed in 
the EVC (Supplementary Table 2), raising the possibility that these 
results may be partly explained by low-level visual similarity. In study 2  
(n = 26), we strengthened our evidence for the role of stereotypical  
associations by comprehensively controlling for visual similarity  
and directly measuring each subject’s idiosyncratic associations 
(Supplementary Figs. 4–6). Stimuli were matched on low-level visual 
features (Supplementary Fig. 4), and visual similarity was addition-
ally controlled for using three common visual models (‘visual DMs’): a 
hierarchical model of high-level ventral visual representation (HMAX), 
a model of image silhouettes (retinotopic outlining), and a model of 
pixel-intensity maps16 (Supplementary Fig. 7) (see Online Methods). 
To assess subjects’ unique stereotypical associations, the stereotype con-
tent task was completed by each subject outside the scanner.

Consistent with our hypotheses, participants’ subjective DMs were 
significantly predicted by their own idiosyncratic stereotype DM, even 
when controlling for all three visual DMs (unstandardized regression 
coefficient b = 0.22, s.e.m. = 0.10, z = 2.18, P = 0.030), as well as the 
normative (i.e., group-level) stereotype DM when added to the model 
(b = 0.28, s.e.m. = 0.11, z = 2.47, P = 0.014; Supplementary Fig. 8) (see 
Online Methods). Thus, biases in how social categories are subjectively 
perceived reflected subjects’ unique conceptual associations about those 
categories (above and beyond any normative group-level tendency), and 
they are unlikely to be explained by inherent visual similarity alone.

Whole-brain searchlight multiple regression RSA (P < 0.05, cor-
rected) was used to test pattern similarity predicted by each partici-
pant’s subjective DM while controlling for the three visual DMs. This 
analysis revealed the rFG (Fig. 3a; x = 27, y = −45, z = −6; mean  
t = 3.98; 40 voxels), and when additionally controlling for the nor-
mative group-level subjective DM (providing a conservative test that 
subjects’ idiosyncratic biases manifested in neural pattern similarity; 
Supplementary Figs. 4 and 6), the OFC (Fig. 3b; x = −15, y = 51,  
z = −27; mean t = 3.76; 33 voxels). These regions therefore contained 
multi-voxel patterns correlated with subjective perceptions above and 
beyond inherent visual similarity described by three visual models.  
As the rFG did not survive the stringent analysis additionally control-
ling for normative group-level biases at whole-brain correction, given 
an a priori hypothesis we inspected the rFG cluster using a region 
of interest (ROI) analysis, which confirmed it to be robust to this 
additional control (t(25) = 3.12, P = 0.005). These results suggest that 
a subject’s OFC and rFG patterns reflected their own idiosyncratically 
biased perceptions over and above visual similarity of the stimuli 
themselves and any normative group-level biases across the sample.
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Figure 1  Task designs for study 1 (n = 17) and study 2 (n = 26).  
(a) Event-related fMRI task. Each encoding event included three exemplars 
from one condition. Additional probe events ensured participants’ visual 
attention (Online Methods). (b) Mouse-tracking behavioral task. On each 
trial, subjects clicked a start button, a face appeared and they made a 
categorization response. Hand movement trajectory was recorded en route 
to the selected response. A trajectory’s maximum deviation toward the 
opposite category response (on the opposite side of the screen) indexed 
the degree to which that category was activated during perception. In this 
hypothetical example, a Black female face elicits a trajectory that initially 
deviates toward the Male response because shared stereotypes between 
Black and Male categories bias perceptions of Black faces toward male 
categorization5. In our RSA framework, a hypothetical bias to perceive 
Black faces as more similar to male faces would correspond to a greater 
similarity between Black and Male categories in the subjective DM.

rFG

EVC

Asia
n

Asian

Asian

a b

Asia
n

Blac
k

Blac
k

W
hit

e

W
hit

e

Fem
ale

Fem
ale

M
ale

M
ale

Ang
ry

Ang
ry

Hap
py

Black

Black

White

White

Female

Female

Male

Male

Angry

Angry

Happy

Happy Dissimilar

Similar

S
te

re
ot

yp
e 

D
M

EVC

LR

OFC

8.86

3.25

t

Subjective DM

Hap
py

Figure 2  Study 1 results (n = 17). (a) Diagonal of the subjective DM  
(in 7 × 7 form) and stereotype DM. Inter-category similarities (Pearson r)  
in subjective perceptions (subjective DM) were significantly predicted  
by inter-category similarities in stereotypical associations (stereotype DM),  
ρ(19) = 0.47, P = 0.023; correspondence between DMs tested using 
Spearman correlation RSA). (b) Results from searchlight RSA (P < 0.05,  
corrected; voxelwise P < 0.005, minimum cluster size, k > 50), indicating 
rFG region (x = 30, y = −55, z = −13; mean t = 3.80; 126 voxels) 
and OFC region (x = −6, y = 37, z = −19; mean t = 3.95; 57 voxels) 
where neural pattern similarity was predicted by the subjective DM 
(whose pattern similarity was predicted by the stereotype DM in a and 
Supplementary Fig. 3). The rFG and OFC regions are depicted on  
inflated surfaces of the right and left hemispheres, respectively. 
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Together the results suggest that rFG and OFC patterns exhibit a rep-
resentational structure of multiple social categories that is entangled 
and conformant to stereotypical associations. Behaviorally, we found 
that the process of perceiving gender, race, or emotion from a face was 
biased toward how the face, given its other category memberships, 
was stereotypically expected to appear: namely, Male faces tended to 
be biased toward Angry categorizations, Female faces toward Happy 
categorizations, Black toward Male, Asian toward Female, and Black 
toward Angry, consistent with prior studies5–7. Beyond these overall 
tendencies, subjects’ own unique stereotypical associations predicted 
idiosyncratic biases in their subjective perceptions, and these stere-
otypically-biased similarities between categories were reflected in the 
similarity of their multi-voxel representations in the rFG and OFC. 
Critically, the intertwined nature of these social category representa-
tions could not be explained by bottom-up visual similarities; instead, 
the results suggested top-down social-conceptual knowledge at play 
that binds seemingly unrelated categories together. These findings 
confirm recent predictions from computational models3–5, showing 
that the brain automatically forms social category representations of 
a face that are interdependent rather than distinct.

Our results bolster the emerging perspective that higher-order 
social cognitive processes may dynamically impact lower-level visual 
processes3,5,18 by showing that the rFG, a region involved in early 
face processing8, contains a representational structure of faces partly 
shaped by social-conceptual knowledge. For instance, recent stud-
ies have found that attitudes19 and goals9 alter fusiform representa-
tions; here we provide evidence that social-conceptual knowledge, 
such as stereotypes, also biases such representations. One possibility 
is that this bias may be imposed by higher-order mechanisms such 
as the OFC. Indeed, our results are consistent with the perspective 
that ventral-frontal regions provide top-down perceptual ‘priors’ in 
visual cognition20, such as predictions to facilitate object recogni-
tion12. Accordingly, the presence of social-conceptual information in 
the OFC may reflect activation of stereotypes and expectations14,15,20, 
which may then sensitize fusiform representations to be in line with 
those expectations and bias perceptions.

This work is not without its limitations. Although measuring stere-
otypical associations permitted a test of naturalistic social-category 

perception, future research could manipulate them to permit stronger 
causal claims. We should also note that our findings are mute with 
respect to the origins of the stereotypical associations studied here. 
In all likelihood, they were acquired across participants’ lifespans 
through cultural transmission and implicit learning1,2, but it is also 
possible they were acquired through direct statistical observation of 
their environments. Regardless of their origin, the results suggest 
they shape how social categories are subjectively perceived, above and 
beyond any inherent physical quality of the categories themselves.

In short, our findings suggest that the fundamental structure of 
social categories when perceiving a face can become warped by social-
conceptual knowledge that binds ostensibly unrelated categories 
together. Thus, although stereotyping has long been considered a con-
sequence of initially perceiving others via categories1,2, our stereotypes 
can affect even our initial categorizations. This process is present not 
only in higher-order regions, such as the OFC, that may play a role 
in accessing that knowledge, but also in rFG patterns more directly 
involved in the basic visual processing of another person.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 3  Study 2 fMRI results (n = 26). (a) Multiple regression 
searchlight RSA results (P < 0.05, corrected; voxelwise P < 0.005,  
k > 32) depicted on an inflated surface of right hemisphere, indicating 
rFG region (x = 27, y = −45, z = −6; mean t = 3.98; 40 voxels) where 
neural pattern similarity was significantly predicted by participants’ 
subjective DMs while controlling for the three visual DMs. An ROI  
analysis confirmed this region was robust to the additional control of the 
normative group-level subjective DM; P = 0.005. (b) Multiple regression 
searchlight RSA results (P < 0.05, corrected; voxelwise P < 0.005,  
k > 32) depicted on an inflated surface of left hemisphere, indicating  
OFC region (x = −15, y = 51, z = −27; mean t = 3.76; 33 voxels), where 
neural pattern similarity was significantly predicted by participants’ 
subjective DMs while controlling for the three visual DMs and the 
normative group-level subjective DM.  
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ONLINE METHODS
Analytic approach. Our paradigm measured similarity between social categories  
at multiple levels. Specifically, for any pair of categories (for example, Black and 
Male), we aimed to demonstrate that similarity in conceptual knowledge (i.e., 
stereotypes) related to the two categories predicts similarity in how faces belong-
ing to those categories are subjectively perceived, which in turn predicts the 
similarity of neural response patterns. For example, we aimed to test whether 
greater conceptual similarity (i.e., stereotype overlap) between the Black and Male 
categories predicts greater similarity in how faces belonging to those categories 
are perceived (i.e., a bias to perceive Black faces similarly to Male faces), which 
in turn predicts greater similarity in neural response patterns when viewing such 
faces during fMRI. In study 2, we additionally tested whether these relationships 
hold when controlling for inherent physical similarity between the categories’ are 
based upon subjects’ idiosyncratic biases and stimuli themselves.

In studies 1 and 2, we measured blood oxygenation-level-dependent (BOLD) 
responses from subjects viewing computer-generated face stimuli in an fMRI 
scanner. The studies were identical in design and procedure, differing only in 
two ways. First, study 1 used computer-generated faces and retained their natu-
ral appearance; study 2 converted these stimuli into gray-scale and matched 
the stimulus conditions on luminance and contrast. Second, study 1 collected 
normative data on the structure of stereotype contents using separate raters; 
study 2, focusing on subjects’ idiosyncratic differences, collected data on the 
idiosyncratic structure of a subject’s own stereotype contents outside the scanner. 
Face stimuli independently varied along race (Black, White, Asian) × sex (Male, 
Female) × emotion (Angry, Happy). Because there is no meaningful “neutral” 
race or sex category, we opted not to include a neutral level of emotion for 
equivalence. Outside the scanner, subjects completed a series of mouse-tracking 
categorization tasks, demographics surveys, and in study 2 the additional stere-
otype content task. The stereotype data were used to predict the mouse-tracking 
data, which in turn were used to predict the neuroimaging data.

Subjects. In study 1, 17 healthy, right-handed subjects were recruited (47% female; 
Mage = 19.41; 10 white, 6 Asian, 1 Hispanic). Subjects were financially compen-
sated or received partial course credit for participation, and they gave informed 
consent in a manner approved by the Committee on the Protection of Human 
Subjects at Dartmouth College. In study 2, a larger sample of 26 healthy, right-
handed subjects were recruited (58% female; Mage = 20.81; all white). Subjects 
were financially compensated for their participation, and they gave informed con-
sent in a manner approved by the University Committee on Activities Involving 
Human Subjects at New York University. The sample size used in study 1  
(n = 17) was chosen based on previous fMRI studies using a similar paradigm 
with RSA methods21,22 and on fMRI studies examining stereotype effects on face 
perception23. In study 2, given the additional focus on across-subject variability 
in stereotype structure, the sample size (n = 26) was increased by approximately 
50% to permit greater variability and power.

Materials. Face stimuli were generated using FaceGen Modeler. This software 
uses a 3D morphing algorithm based on anthropometric parameters of the human 
population24, in which various social category cues can be precisely manipulated 
while holding other extraneous cues constant. Faces independently varied along 
race (Black, White, Asian), sex (Male, Female), and emotion (Angry, Happy).  
For study 1, 32 unique faces were generated for each condition (for example, 
32 Happy Black Female faces), resulting in a total 384 face stimuli. Faces were 
cropped and vignetted onto a gray background (see Supplementary Figs. 1 and 
2b for sample stimuli). For study 2, to control for any low-level visual similar-
ity, the stimuli were matched on luminance and contrast across the 12 stimulus 
conditions using the SHINE toolbox25 and placed onto a white background (see 
Supplementary Fig. 4 for sample stimuli).

Although emotion categories are dynamic, compared with gender or race 
categories which generally remain static, emotion exhibits categorical percep-
tion effects similar to those of static characteristics and is a widely studied form 
of perceptual categorization26,27. Moreover, current models of visually-based 
social categorization include emotion as a social category3. Thus, for purposes 
of the current work, we refer to emotion as a social category.

Procedure. fMRI task. The study procedure in the scanner largely followed that 
of Connolly et al.21. The fMRI task was an event-related design over 10 functional  

runs, where subjects passively viewed faces. There were 6 trials in each run,  
each trial consisting of: 6 encoding events, 1 null event (fixation), and 1 probe 
event (recognition). Trials were separated by variable inter-trial intervals (2,000–
6,000 ms). The encoding events were presented in a pseudo-randomized order, 
with the single null event placed between the first and last encoding event, 
followed by the probe event at the trial end. Probe events were used to ensure 
subjects maintained attention during face presentations. Each encoding event 
presented 3 unique face stimuli belonging to a single condition (for example, 
Happy Black Female) in succession for 500 ms each, followed by a 4,500 ms  
fixation cross. The null events entailed 6,000 ms of fixation, serving as a measure 
of baseline. Probe events were identical in timing to encoding events; however, 
participants viewed either faces already presented within the trial or novel faces 
to that trial (pseudo-randomized so as to be counterbalanced). Participants were 
asked to provide a button-press if the faces were presented earlier that trial. Face 
stimuli within a given encoding event were randomly selected from the condition 
of that event without replacement until all stimuli were selected. Accordingly, 
each face was presented 2 or 3 times by the end of the task, depending on the order 
to which they were selected without replacement until all had been presented. 
All 12 conditions were presented every 2 trials. Altogether, each condition was 
presented during 30 separate encoding events.

Mouse-tracking tasks. Subjects completed mouse-tracking tasks to assess how 
gender, race, and emotion categories biased one another in subjective perceptions 
and to compute dissimilarity matrices (DM) used for neuroimaging analyses. 
The mouse-tracking data were collected using the well-validated MouseTracker 
software28. Standard two-choice tasks were implemented. In a randomized order, 
subjects completed 5 mouse-tracking tasks, in which they categorized target 
stimuli along Sex (Male vs. Female), Emotion (Angry vs. Happy), or Race (White 
vs. Black, Black vs. Asian, White vs. Asian). All face stimuli were presented once 
in the Sex and Emotion tasks. Each face stimulus was presented in only the  
2 applicable (out of 3) race tasks. For example, a Happy Black Female stimulus 
would be presented in the Black vs. White and Black vs. Asian tasks, but not in 
the White vs. Asian task. In all 5 tasks, to begin each trial subjects clicked on a 
‘Start’ button located at the bottom-center of the screen, which was immediately 
replaced by the face stimulus. Face stimuli were presented in a randomized 
order. Subjects were asked to categorize the stimulus as quickly and accurately as 
possible by selecting one of two responses (for example, Male vs. Female, Asian 
vs. Black), located in the top-left and top-right corners of the screen, using a 
mouse-click. The left/right location of responses was counterbalanced across 
subjects. During the categorization process, the streaming x, y coordinates of the 
mouse were recorded (sampling rate ~70 Hz). To ensure trajectories were on-line 
with the actual decision process, we encouraged participants to begin initiating 
movement as early as possible. As in previous research, if movement initiation 
time exceeded 400 ms, a message appeared after subjects made their response, 
encouraging them to start moving earlier on future trials even if they were not 
fully certain of their response. Further details on the methodology and analytic 
techniques for mouse-trajectory data can be found elsewhere28. See Figure 1 and 
Supplementary Figure 1 for a schematic illustration of the process.

Stereotype content task. To measure stereotype contents (i.e., conceptual 
knowledge) associated with each social category, we collected ratings on a large 
set of traits for gender, race, and emotion categories. In study 1, these data were 
collected from a separate group of raters to provide normative information 
about stereotype content. This allowed us to assess the degree to which common 
stereotypical associations specifically underlie the biased similarity structure 
observed in subjective perceptions (the subjective DM, from mouse-tracking 
data). The subjective DMs, in turn, were used to predict neural patterns. Raters 
in study 1 were recruited through Amazon Mechanical Turk online and received 
monetary compensation: gender task (n = 20; 55% female; Mage = 32.65; 16 
White, 2 Asian, 1 Black, 1 American Indian), race task (n = 18; 39% female; 
Mage = 37.06; 14 White, 1 Black, 2 Hispanic, 1 other), and emotion task (n = 21; 
48% female; Mage = 32.95; 17 White, 2 Black, 1 Asian, 1 Other). Five raters were 
excluded because they did not correctly follow the instructions. Following the 
survey, raters also completed a standard demographics questionnaire. In the task, 
raters were presented with 96 traits (for example, ‘aggressive’, ‘intelligent’) one 
at a time in a randomized order and indicated whether the trait was stereotypic 
of the Male or Female category (gender task); Black, White, or Asian category 
(race task); or Angry or Happy category (emotion task); using dichotomous 
judgments (yes or no). Ratings of each category were blocked; the order of blocks 
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(for example, Male first, Female second) was counterbalanced across raters.  
The traits included were a comprehensive set used in previous work docu-
menting overlapping Black–Male and Asian–Female stereotypical associations 
and several additional traits29–31. To prevent social desirability concerns from  
biasing responses, raters were instructed to answer based on what they believed 
the held stereotypes are of a typical American.

In study 2, given the focus on idiosyncratic differences among subjects, the 
same subjects who underwent fMRI scanning completed the stereotype content 
task following the mouse-tracking task, in which they rated all 7 categories on 
96 traits. This allowed us to explore the extent to which the unique structure of 
a subject’s stereotype contents was present in their subjective perceptions (sub-
jective DM), which in turn was used to predict neural patterns. To permit more 
precise assessment using a wider range of options, the 96 traits in study 2 were 
rated on a 7-point scale from “non-stereotypic” to “very stereotypic”.

fMRI acquisition and preprocessing. In study 1, subjects were scanned using 
a 3T Philips Intera Achieva scanner in the Dartmouth Brain Imaging Center. 
Anatomical images were acquired using a T1-weighted protocol (MPRAGE, 
1.33 × 1.33 × 1.33 mm). Functional images were acquired using a single-shot 
gradient echo EPI sequence (TR = 2,000 ms, TE = 35 ms) using 35 interleaved 
oblique-axial slices (3 × 3 × 4 mm voxels; no slice gap). In study 2, subjects 
were scanned using a 3T Siemens Allegra scanner in the NYU Center for Brain 
Imaging. T1-weighted anatomical images were collected (MPRAGE, 1 × 1 ×  
1 mm), and functional images using 34 slices (3 × 3 × 3 mm voxels; no slice gap) 
were acquired using a customized multi-echo EPI sequence (TR = 2,000 ms,  
TE = 30 ms) developed by the NYU Center for Brain Imaging, which was opti-
mized for mitigating susceptibility artifacts in the OFC and medial-temporal 
regions. In both studies, preprocessing of the imaging data was conducted using 
the most recent version (16.0.09) of AFNI software32. Functional imaging data 
preprocessing included high-pass filtering of frequencies, slice timing correction, 
3D motion correction, voxelwise detrending, and spatial smoothing using a 3D 
Gaussian filter (4-mm FWHM). Structural and functional data of each subject 
were transformed to standard MNI space.

Mouse-trajectory preprocessing. Standard mouse-tracking preprocessing was 
used28. All response trajectories were rescaled into a standard coordinate space 
(top left: [–1.0, 1.5]; bottom right: [1.0, 0]) and normalized into 100 time bins using 
linear interpolation to permit averaging of their full length across multiple trials. 
For comparison, all trajectories were remapped rightward. To obtain a by-trial 
index of the degree to which subjects were biased to select the incorrect gender, 
race, or emotion category (on the opposite side of the screen), we calculated the 
maximum deviation (MD) of each mouse trajectory toward the opposite response 
option. MD is measured by the maximum perpendicular deviation from an  
idealized straight-line trajectory between its start and endpoints. During two-
choice mouse-tracking categorization tasks (for example, Male vs. Female), 
deviation in a subject’s mouse trajectory toward an opposite category response 
(indexed by MD) is a well-validated measure of the degree to which that  
category was activated during the perceptual process (Fig. 1b and Supplementary 
Fig. 1b)28,33,34. If stereotypical associations link one category to another (for 
example, Black to Male), subjects’ perceptions are systematically biased toward 
that category and, consequently, hand trajectories deviate toward that category 
response in mouse-tracking paradigms5. The pattern of average MD values in the 
various conditions was used to develop dissimilarity matrices (DMs), indexing 
the similarity or dissimilarity of each face category (for example, Black) to another 
category (for example, Male) in subjective perceptions. Such DMs were then used 
to predict neuroimaging data, as detailed in the sections that follow.

Pattern similarity analyses preparation. For each subject, searchlight repre-
sentational similarity analysis (RSA) requires a single whole-brain pattern of 
activation per condition. These patterns were used to assess representational 
similarity between condition pairs. Accordingly, we estimated the average hemo-
dynamic response for each condition at every voxel and for every run using the 
3dDeconvolve procedure in AFNI. Specifically, subjects’ BOLD responses were 
modeled using a GLM whose design matrix included a total of 13 predictors: 12 
predictors for each of the 12 stimulus conditions, and one additional predictor 
to model probe events. All predictors were modeled as boxcar functions across 
the first 2 s of each event (during which the face stimuli were presented) and 

convolved with a gamma variate function (GAM in AFNI). We used the resulting 
voxelwise t statistics comparing condition responses to baseline to comprise the 
whole-brain patterns of activation for each of the 12 conditions. These statistics 
were then averaged across runs at every voxel and used for RSA. Neural responses 
associated with probe events were not used for subsequent analyses.

Overview of pattern analyses and dissimilarity matrices (DMs). Dissimilarity 
matrices (DMs) are the symmetrical matrices of dissimilarity between all condi-
tion-pairs (conditions × conditions; in our case, 12 × 12 category combinations). 
In such a matrix, larger values represent larger dissimilarity of pairs, such that 
the smallest value possible is the similarity of a condition unto itself (dissimilar-
ity of 0). Dissimilarities between conditions used to construct the stereotype, 
subjective, visual, and neural DMs were computed as Pearson correlation (study 
1) or squared Euclidean (study 2) distances16 (details on these various DMs are 
provided below). To assess the correspondence between neural data (neural DMs) 
with our models (subjective and visual DMs), DMs were transformed into vectors 
of their unique values (values under the diagonal), and the Spearman rank-order 
correlation between these dissimilarity vectors was assessed (rank-ordering is 
preferable when comparing DMs from different measures as it does not assume 
a linear relation)16,35.

Searchlight RSA was completed using PyMVPA36. The searchlight RSA 
technique performs a searchlight37 across the brain seeking regions where the 
similarity of the neural voxel-patterns per condition significantly correlates with 
that predicted by a model. Specifically, within a 3-voxel radius (123 voxels) 
sphere defined around each searchlight center voxel, the Spearman correlation 
between neural representational-similarity (specifically, the neural DM) and that 
predicted by a model based on behavioral or stimulus-derived data (for example, 
subjective or visual DM) was computed. Spearman ρ values were then mapped 
back upon the center voxel, yielding a whole-brain map showing the representa-
tional similarity of the conditions between the predicted model and neural data 
per subject. Specifically, the procedure mapped Spearman ρ coefficients to each 
voxel per subject, indexing the correlation between the vector-form distances 
(flattened unique values under the diagonal of the DM) of the subjective DM and 
neural DM within that voxel’s respective searchlight sphere. To test this relation-
ship for significance, the Spearman ρ values were then Fisher-z transformed and 
t-tested at a group level against zero (using AFNI’s 3dttest++ program).

In study 1, this RSA was used to predict neural similarity from the  
average subjective DM, mapping Spearman ρ correlation coefficients back to 
each searchlight sphere center. In study 2, we used multiple regression analy-
ses (ordinary least-squares) rather than correlation to additionally control for  
alternate predictor DMs. These analyses therefore performed the same  
procedure, while also controlling for the relationships between a number of 
alternate DMs (for example, visual DMs) and the local sphere’s neural DM. 
Thus, regression beta coefficients (rather than correlation coefficients) were 
mapped to each voxel per subject. The beta coefficients were then t-tested at a 
group level against zero (using AFNI’s 3dttest++ program). In both studies, we 
corrected for multiple comparisons (false positive rate < 0.05) using Monte Carlo 
simulations (3dClustSim in AFNI; smoothness estimated with a spatial auto- 
correlation function). Simulations demonstrated that an experiment-wide α < 0.05  
was maintained using a voxelwise threshold of P < 0.005 and a minimum cluster 
extent of 50 (study 1) and 32 (study 2) voxels.

In study 2, we used multiple regression RSA to predict neural similarity  
with a subject’s unique subjective DM over and above other models of category 
similarity. Because multiple regression RSA assumes a linear combination of 
multiple predictor DMs, these analyses require a similarity measure that sums 
linearly; thus, we used squared Euclidean distances38. Prior to computing the 
measure, pattern vectors were z-normalized in order to isolate the relative  
pattern of each condition (removing absolute differences in vector magnitude 
and scale), which is sensible given our Pearson correlation distance approach  
to pattern similarity in which normalization is inherently carried out by a  
correlation distance39,40. Indeed, squared Euclidean distances of normal-
ized pattern vectors are equivalent (i.e., linearly proportional) to correlation  
distances41, and we therefore report statistics using correlation distances for ease 
of understanding and consistency with study 1.

In study 2, we first performed multiple regression RSA, regressing neural- 
pattern similarity on the subjective DM while simultaneously controlling for 
three visual DMs (HMAX model, image silhouettes, pixel-intensity maps; see 
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“Visual DMs,” below). Together with the matching of stimuli on low-level visual  
properties in study 2, controlling for visual DMs provides a stronger test of 
the unique contribution of social-conceptual knowledge on rFG and OFC  
representation structure above and beyond any possible inherent visual similar-
ity. Note that these visual DMs additionally control for neural patterning that 
might merely reflect the 12 unique category combinations or 3 unique category 
dimensions (gender, race, emotion) without any systematic biases. We added the 
normative group-level subjective DM to the model in order to provide a more 
conservative test showing that stereotype-driven category similarity unique to 
each subject was reflected in that subject’s neural-pattern similarity (controlling 
for the normative structure of stereotypic associations in the sample). Because 
the significant rFG cluster elicited by the analysis controlling for visual models 
did not survive the conservative analysis of additionally controlling for the nor-
mative group-level subjective DM at whole-brain correction, given an a priori 
hypothesis we inspected the rFG cluster using an ROI analysis to confirm its 
robustness to the additional control. The RSA effect (beta values) in the rFG 
cluster (40 voxels) was tested against 0 using a one-sample t-test. Note that the 
critical test of the rFG effect’s robustness to visual controls is guaranteed by the 
independent whole-brain analysis.

Stereotype DM. Using data from the stereotype contents task, a stereotype DM 
was created to assess the similarity or dissimilarity in conceptual associations of 
the various social categories based on either data from separate raters (study 1) 
or idiosyncratic data from each individual scanner subject (study 2). For study 
1, we averaged responses across independent raters within each trait and tar-
get category, creating a proportion score per trait and per category. We then 
computed the pairwise Pearson correlational distance between all categories in 
the stereotype contents data (1 – r between each of the 7 category vectors of 
ratings on the 96 traits). This produced a 7 × 7 stereotype DM between the 7 
categories to assess those categories’ similarity in stereotype contents (Pearson 
correlational distance; see Fig. 2a). In study 2, idiosyncratic stereotype DMs were 
created for each scanner subject. As in study 1, we calculated the Pearson cor-
relation distance between all categories in their stereotype contents data (1 – r 
between each of the 7 category vectors of ratings on the 96 traits) within each 
subject. This produced a 7 × 7 stereotype DM between the 7 categories unique to 
each subject. A normative group-level stereotype DM was also computed as the 
mean 7 × 7 DM of all idiosyncratic stereotype DMs to use as a statistical control  
(Supplementary Figs. 4 and 6).

Because the stereotype DM exists only in 7 × 7 form (based on categories) 
rather than 12 × 12 form (based on category combinations), it is not possible 
to correlate it with a searchlight sphere’s neural DM (in 12 × 12 form) directly. 
Moreover, our hypotheses concern neural regions that are involved in represent-
ing subjective perceptions (assessed via mouse-tracking), which may in turn may 
be biased by stereotypic associations. Accordingly, the relationship between neu-
ral DMs and stereotype DMs is necessarily indirect. Thus, our analytic approach 
was to first collapse 12 × 12 subjective DMs into their averaged 7 × 7 form, and 
to predict such 7 × 7 subjective DMs from stereotype DMs (in study 2, while 
additionally controlling for a number of alternate model DMs). Establishing that 
stereotype structure is present in subjective perceptions (subjective DMs), we 
then aimed to predict neural DMs (12 × 12) from subjective DMs (which were 
shown to reflect stereotype structure) in their original 12 × 12 form (in study 2, 
while additionally controlling for a number of alternate model DMs).

Subjective DM. Using data from the post-scan mouse-tracking tasks, a subjective 
DM for each subject was created to assess the similarity or dissimilarity of the 
various social categories at the level of subjective perceptions. In study 1, data 
from one subject were excluded due to a data-recording malfunction. Incorrect 
categorization responses and trials with reaction times exceeding 2,000 ms were 
excluded. As described earlier, during two-choice mouse-tracking categorization 
tasks (for example, Male vs. Female), deviation in a subject’s mouse trajectory 
toward each category response (indexed by MD) provides an indirect measure of 
the degree to which that category was activated during perception (Fig. 1b)28,33,34. 
The pattern of average MD values in the various conditions was used to develop 
the subjective DMs (see earlier for more information on the MD measure).  
For example, the extent to which subjects were biased to select ‘Male’ while cat-
egorizing Black faces can be conceptualized as higher similarity between Male 
and Black categories. Such stereotypically biased similarity between Male and 

Black would therefore be reflected in the subjective DM, which in turn was used 
to predict neural patterns showing a correspondingly biased similarity.

For each of the 12 stimulus conditions, we treated the average MD rela-
tive to the maximum possible MD [MD/max(MD)] as similarity toward the 
unselected response on the opposite side of the screen (incorrect response; 
for example, Happy Black Female similarity to ‘White’), and inverse effect 
[1 – (MD/max(MD))] as similarity toward the selected response (correct 
response; for example, Happy Black Female similarity to ‘Black’). In such a 
way, the physical proximity or distance of the trajectory toward the unselected 
versus selected responses served as a proxy for the similarity or dissimilarity 
of the particular stimulus condition to the 7 response categories across the 
mouse-tracking categorization tasks. Accordingly, each task provided similar-
ity measurements of each of the 12 conditions categorized to both response 
options in that task (Emotion task: ‘Angry’ versus ‘Happy’; Sex task: ‘Female’ 
versus ‘Male’; Race task a: ‘Asian’ versus ‘Black’; Race task b: ‘Asian’ versus 
‘White’; Race task c: ‘Black’ versus ‘White’). For each of the 12 stimulus condi-
tions, the result was a vector of 1 similarity value toward each of the 7 basic 
category responses (‘Asian’, ‘Black’, ‘White’, ‘Female’, ‘Male’, ‘Angry’, ‘Happy’) 
(Supplementary Fig. 2a). We then computed the final condition-pair dis-
similarities as the Pearson correlational distance between their respective 
7-length category-similarity vectors (Supplementary Fig. 2a), resulting in 
a 12 × 12 subjective DM for each subject (Supplementary Figs. 2b, 4 and 6). 
As such, similarity in this context means activating the 7 response categories 
in a similar fashion during categorization. The subjective DM thus captures 
the extent to which various social categories are biased toward one another 
in subjective perceptions.

Visual DMs. As we are interested in biased category similarity due to  
conceptual knowledge rather than any inherent visual similarity from mere 
physical resemblance, in study 2 we not only matched stimuli on several visual 
characteristics, but we also developed visual DMs to control for possible effects 
from physical resemblance (Supplementary Fig. 7). We computed multiple DMs 
based on several models representing the similarity or dissimilarity in visual 
features composing the 12 stimulus conditions. Accordingly, these visual DMs 
captured inherent physical resemblance between each pair of category conditions. 
Specifically, we selected three visual models used in previous research to account 
for different levels of visual representation relevant to our stimuli16.

HMAX C2. A visual DM was created from the C2 layer of the HMAX model 
of ventral-visual stream representation42,43. This model simulates higher-level 
representation in the object recognition visual stream, meant to closely resem-
ble representation in extrastriate visual area V4 or posterior inferior temporal 
cortex (IT). This model has been found to best account for similarity structures 
in the FG compared with other visual computational models16. HMAX features  
per stimulus were estimated, and averaged within face category conditions.  
These feature vectors were then correlated for each condition-pair to generate 
a final HMAX visual DM.

Image silhouette. To model low-level visual properties of the images  
represented in EVC, we computed a silhouette DM, which was the condition-
pair correlations between average flattened pixel-intensity maps of face stimuli 
that were transformed into silhouettes (the entire face image converted to 0s, 
background to 1s). Silhouette models have been found previously to best account 
for representational similarity in EVC, even more so than models of specific 
regional cell types16. Additionally, one concern with matching these stimuli 
on low-level features was that they could not be matched on retinotopic out-
lining due to facial shape cues playing an important role in categorization44.  
The silhouette model captures retinotopic outlining of the images and therefore 
serves as a control of this feature.

Pixel-intensity maps. While the silhouette model has been found to account 
well for EVC representation in previous work, it of course neglects many other 
low-level image properties besides image outlines. We therefore included a 
model of the general image similarities to account for other low-level visual 
features of the images. Specifically, a luminance pattern DM was created by cor-
relating all pairs of the average flattened pixel-intensity maps per condition.

Analysis of behavioral data. In both studies, to examine the nature of social 
category similarity in subjective perceptions (the subjective DM), we broke 
down each subject’s 12 × 12 subjective DM (Supplementary Fig. 2b) into  



nature neurosciencedoi:10.1038/nn.4296

7 × 7 DMs corresponding to the 7 basic categories (Male, Female, Black, White, 
Asian, Angry, Happy) (Fig. 2a and Supplementary Fig. 2c,d). We could then use 
this 7 × 7 DM to test for the presence of stereotype-driven category similarities. 
The collapsing of the subjective DM into a 7 × 7 format of basic categories was 
necessary to compare it to the 7 × 7 stereotype DM.

In the original 12 × 12 DMs, each of the 12 conditions (for example, Happy 
Black Male) had an associated vector of response activation (indexed by 
maximum deviation (MD)) for the 7 basic categories (for example, Angry), 
and dissimilarity was computed on the basis of those vectors. To compute 
the 7 × 7 DM, we performed a procedure similar to that used to create the  
12 × 12 subjective DM. First, for each of the 7 basic categories, we created 
a vector of similarity to each category response option from the mouse-
tracking data (for example, Male similarity to Asian, Black, White, Female, 
Male, Angry, Happy), by averaging all of the aforementioned response  
activation vectors (of each condition’s similarity to the 7 basic category 
response options) of conditions containing that category. For example, the 
Male vector of response activation was the average similarity of the Happy 
Black Male, Happy White Male, Happy Asian Male, Angry Black Male, Angry 
White Male, and Angry Asian Male conditions to the 7 category response 
options (such as how an average of the vectors in Supplementary Fig. 2a 
would index average Asian similarity to the 7 basic category responses). The 
pairwise Pearson correlation distance between these vectors created a 7 × 7 
subjective DM (Fig. 2a), indexing similarity between the 7 basic categories 
(for example, distance of Male to Female). Incorrect categorization responses 
and trials with reaction times exceeding 2,000 ms were excluded.

It should be noted that, while the averaging procedure to derive the 7 × 7 DM 
from the 12 × 12 DM does involve overlapping observations used to compute 
different categories, and these overlaps produce covariance between categories 
(for example, Black is calculated from Black Males, and Male is calculated from 
Black Males), there is an equal amount of dependence between non-mutually 
exclusive categories (for example, Black is calculated from an equal number of 
Black Males and Black Females). That is, the inherent similarity between non-
mutually exclusive categories (for example, Black to Male) due to overlapping 
observations is uniform between categories (for example, Black is inherently 
as related to Male and Female). Furthermore, this procedure does not produce 
inherent dissimilarity within categories (for example, sex), as they do not share 
any observation and are thus independent (for example, Male is not computed 
with any Female observations). Since the purpose of this analysis is to inves-
tigate interdependence between social category dimensions (for example, sex  
and race, such as Male to Black versus Asian), and not within them (for  
example, Male versus Female), this has no confounding effect on any of  
the analyses.

In study 1, to first test similarity between categories’ stereotypic associations 
(see Supplementary Table 1), we compared Pearson r coefficients (extracted 
from the stereotype DM) by Fisher z-transforming them, then computing 
a z score between them (allowing us to significance test against a standard 
normal distribution45). Then, to assess the degree to which such overlapping  
stereotypes predicted biased similarities in subjective perceptions (mouse-
tracking data), we conducted RSA16 between the stereotype overlap data (7 × 
7 stereotype DM) and mouse-tracking data (7 × 7 subjective DM). Specifically, 
we tested the Spearman correlation between the unique inter-category  
similarities under the diagonal of the stereotype DM and subjective DM (each 
therefore with 21 observations).

While study 1 used normative stereotype data from separate raters, study 2 
examined subjects’ idiosyncratic differences in stereotypic associations (which, 
in turn, were used to predict representational similarity in subjective perceptions 
and neural patterns). Accordingly, Supplementary Figure 5 depicts subjects’ 
variability in inter-category similarities in stereotypic associations (stereotype 
DMs) and subjective perceptions (subjective DMs). Using multiple regression 
RSA, we tested whether subjects’ idiosyncratic stereotype DMs predicted their 
subjective DMs while controlling for possible effects of inherent visual similar-
ity (three visual DMs of HMAX output, image silhouettes, and pixel-intensity 
maps) as well as any overall normative group-level tendencies (the normative 
group-level subjective DM is depicted in Supplementary Figs. 4 and 6). Due 
to the need to examine idiosyncratic subject-specific effects using multiple 
predictor DMs (unlike behavioral analyses of study 1), we used a multi-level 
regression framework with generalized estimating equations (GEE) in order to 

appropriately account for the correlated nature of repeated measurements within 
subjects46. No assumptions were made about the specific correlation structure a 
priori (unstructured correlation matrix). Unstandardized regression coefficients, 
standard errors, and Wald z statistics are reported.

Relationship between subjective DM and visual DMs. To confirm that the 
stimulus matching on low-level visual properties of study 2 was effective in 
reducing stimulus confounds in study 1, a multiple regression RSA (using  
ordinary least-squares) was used to estimate the relationship between the 
three visual models (visual DMs) and the subjective DM in studies 1 and 2.  
We anticipated that visual models would be significantly correlated in both  
studies, because even if perceptions of facial stimuli (subjective DM) are partly 
biased by social-conceptual knowledge, as we predict, they clearly should still 
reflect the stimuli’s visual characteristics (visual DMs) to some sizable degree 
as well. Thus, the subjective DM should likely be explained by the visual DMs 
regardless of how stimuli are matched, as the physical cues providing the basis 
for categorization will always affect mouse-tracking response trajectories during 
categorization (which in turn are used to compute the subjective DM). However, 
we anticipated considerably stronger effects of the visual DMs on the subjective 
DM in study 1 than study 2. First, we regressed the study 1 12 × 12 subjective 
DM onto the three 12 × 12 predictor DMs of the study 1 stimuli (HMAX out-
put, image silhouettes, and pixel intensity maps) using multiple regression RSA 
(unique values under the diagonal resulted in 66 observations for each DM). 
Variables were z-normalized before analysis. The combined omnibus effect of 
the visual DMs on the subjective DM was quite strong in study 1 (mean b = 0.34, 
F(3,62) = 59.86, P < 0.0001). As expected, conducting the analogous analysis in 
study 2 (regressing the study 2 subjective DM onto the three visual DMs of study 
2 facial stimuli) indicated a notably weaker effect of the visual DMs on the sub-
jective DM (mean b = 0.18, F(3,62) = 18.14, P < 0.0001). These results confirmed 
that low-level visual properties matching in study 2 was successful in reducing 
stimulus confounds in study 1.

Statistics. All tests were two-tailed. For RSA, standard techniques were used. 
Spearman rank order correlation analyses were used to assess relationships 
between two DMs. When controlling for additional predictor DMs, we used 
ordinary least-squares multiple regression. Given the need to assess subject-
specific correspondence between stereotype and subjective DMs in study 2, 
RSA of study 2 behavioral data was performed in a multi-level regression frame-
work using GEE in order to appropriately account for the correlated nature of 
repeated measurements within subjects (no assumptions were made about the 
correlation structure). In order to compare similarity values within the stere-
otype DM of study 1, we compared the cell Pearson r coefficients by Fisher 
z-transforming them, then computing a z-score between them (allowing us 
to significance test against a standard normal distribution45). In all analyses, 
although not formally tested, data distributions were assumed to be normal. 
Both studies were within-subjects designs involving no group allocation; there-
fore, blinding to any between-subject conditions and randomization to such 
conditions was not applicable.

A Supplementary Methods Checklist is available with additional details about 
all reported analyses.

Data and code availability. The data that support the findings of this study are 
available from the corresponding authors upon request. The code used for the 
analyses also is available upon request.
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