The phonological mind

Iris Berent

1 Department of Psychology, Northeastern University i.berent@neu.edu

Abstract

Humans weave phonological patterns instinctively. We form phonological patterns at birth; we spontaneously generate them de novo, and we impose phonological design on both our linguistic communication and cultural technologies—reading and writing. Why are humans compelled to generate phonological patterns? Why are phonological patterns intimately grounded in their sensorimotor channels (speech/gesture) while remaining partly amodal and fully productive? And why does phonology shape natural communication and cultural inventions alike? Here, I suggest these properties might emanate from the architecture of the phonological mind—an algebraic system of core knowledge. I evaluate this hypothesis in light of linguistic evidence, behavioral studies, and comparative animal research that gauges the design of the phonological mind and its productivity.

1. Some puzzles

All languages construct words (meaningful symbols) from meaningless elements. English speakers contrast gods and dogs, they write blogs not lboqs, and they rhyme them with frogs. Such patterns are not merely reflexes of speech because similar meaningless structures are found in sign languages. And in both modalities, these patterns generalize to new forms. People’s tacit knowledge concerning the patterning of meaningless linguistic elements is called phonology.

Why do people weave phonological patterns? Viewed broadly, vocal patterns of meaningless elements are quite common in nature. But while animal communication is typically attributed to specialized cognitive systems, human phonological patterns are viewed as products of domain-general sensorimotor pressures (e.g., blog is easier to perceive and articulate than lboq) and associative mechanisms of statistical learning. Even those who endorse the specialization of the language faculty tend to rest their case on syntax; phonological specialization is deemed unlikely.

But this conclusion is premature (see Figure 1)—it fails to explain why distinct phonological systems—signed and spoken—converge on their design; why this design relies on algebraic mechanisms (rather than merely analog sensorimotor pressures); why phonology emerges early and spontaneously; and why it forms the basis for reading. Here, I suggest that these properties could emanate from the architecture of the phonological mind—the possibility that phonology is an algebraic system of core knowledge. I spell out these two hypotheses below and illustrate some of the relevant evidence. A detailed discussion of this thesis can be found elsewhere.

2. Algebraic phonology: a tale of two masters

Phonological patterns carry a double duty. To ensure that words are transmitted efficiently, phonological patterns must be grounded in the phonetic channel (e.g., the auditory and motor systems). Modern phonology has repeatedly shown that phonological patterns make phonetic sense. The Consonant-Vowel (CV) syllable (e.g., ba) for instance—a structure prevalent across languages—optimizes coarticulation and enhances the perception of acoustic cues. However, phonological systems do not answer to their phonetic master directly. This is because the analog sensorimotor system fails to satisfy a second constraint on phonological design: the need to express large lexicons and keep up with the vast productivity of
language—the inventions of faxes, blogs, and tweets. Doing so requires that words are formed by conjoining discrete, meaningless elements according to algebraic rules. Consequently, sound-pattern restrictions, such as the preference for CV syllables, are expressed not phonetically (e.g., as a demand for “easy production”), but rather as algebraic rules that form syllables by combining broad categories of “consonants” and “vowels.” Phonological patterns thus attain phonetic goals by relying on algebraic means—a property I call algebraic optimization.

Figure 1. The seven wonders of phonology. Many psychologists believe that phonology is a weak associative system that can be reduced to the auditory and motor interfaces. This figure illustrates some of the challenges facing this view (clockwise). Experimental and computational evidence suggests that phonological generalizations rely on powerful algebraic rules (1). Moreover, distinct phonological systems converge on their design (2-4): All human languages possess a phonological system (2); the phonological systems of different languages share common primitives and constraints (3); some of these design features are even shared across modalities—they are found in both signed and spoken languages, but not in nonlinguistic auditory communication—either human musical systems or nonhuman systems of animal communication (4). Humans acquire a phonological system rapidly and spontaneously (5), and when they lack access to a language model (e.g., because they are deaf members of hearing communities), people generate a phonological system de novo (6). Finally, phonological design shapes not only natural linguistic communication but it also offers scaffolding for the cultural technologies of reading and writing (7). The view of phonology as an algebraic system of core knowledge captures these facts.
The autonomy of the phonological system from the phonetic interface is supported by linguistic analysis, showing that phonological systems occasionally betray functional goals that conflict with systematic rules. Further evidence that phonology employs algebraic rules is presented by experimental findings.

Algebraic rules operate on variables that stand for entire equivalence classes. For example, the *AAB rule applies to two classes (A and B) of “any consonant”, and bans identical consonants from occurring at the left edge (e.g., sisum is illicit). Because this class is open-ended, the rule applies to any class member—familiar or novel. Identity restrictions are actually quite common in phonology, and the *AAB rule is prevalent in Semitic languages—these languages ban identical consonants from the left edge of stems (e.g., sisum) but allow them at their right ends (e.g., simum). Remarkably, people generalize this rule not only to novel stems, but even to ones with nonnative consonants that comprise features that are unattested in the language (see Box 1). Computational modeling suggests that such generalizations cannot be learned by various non-algebraic mechanisms—those that lack the capacity to operate on variables that stand for equivalence classes. As such, these results suggest that the phonological mind has the principled capacity to extend generalization across the board—the hallmark of linguistic productivity viewed typically as reserved to syntax.

Abstract algebraic rules, such as the *AAB rule, are nonetheless functionally motivated, as the distinction between AAB and ABB forms exacts specific neural costs, additional to those required to encode identity. By eliminating the AAB/ABB contrast, Semitic languages avoid the costly neural operation of binding identity to word edges. Functional costs, however, are addressed indirectly, by relying on algebraic phonological rules that are phonetically motivated. Accordingly, phonology exhibits algebraic optimization.

3. Phonology is a system of core knowledge

Beyond their capacity to encode algebraic rules, phonological systems further share specific rules whose precursors are evident in preverbal infants and nonhuman animals. Universality and early onset are hallmarks of core knowledge—in innate principles that shape both early knowledge and mature cultural inventions. Just as our rudimentary understanding of number, object, agency, and living things shape later theories of mathematics, physics, morality and biology, so does phonology form the basis of reading. Such similarities suggest that phonology is a system of core knowledge. I review some of the evidence below.

3.1. Shared design.

Linguistic theory suggests that distinct phonological systems exhibit shared representational primitives and constraints. Concerning primitives, all spoken languages encode phonological features; features give rise to segment classes, most notably, consonants and vowels, which combine to form syllables. Experimental findings have implicated those primitives in early development. For example, consonants and vowels have been shown to carry different roles in early language processing (consonants mediate lexical access, whereas vowels convey grammatical information). Consonants and vowels further segregate neurally and doubly-dissociate in aphasia.
Many phonological restrictions specifically target identical elements. The example in (a) illustrates one such restriction in Hebrew. Hebrew allows identical consonants to occur at the right edge of stems (ABB, e.g., *ginun*) but disallows them at the left edge (AAB, e.g., *gigun*). Identity restrictions, by definition, apply to equivalence classes (e.g., “any consonant”). To represent such restrictions, it is thus necessary to encode algebraic variables that bind the occurrence of elements across categories (see b): the element selected for the first A category (e.g., the consonant b) must be identical to the one selected for the second A category (i.e., another b).

Weaker computational mechanisms that lack operations over variables (certain connectionist networks and Maximum-entropy models) can learn to distinguish AAB from ABB forms, and even extend generalizations to novel items\(^{13, 29}\). However, these mechanisms fail to extend the identity rule to novel items that are dissimilar to the familiar items experienced by learners (i.e., ones with novel segments and novel features) \(^{13, 29, 35}\).

Experimental results indicate that such rules form part of natural phonological systems. The critical evidence is presented by the scope of phonological generalizations (see c). If people do, in fact, encode an algebraic rule of the form *AAB*, then they should be able to generalize their knowledge across the board—not only to the native consonants of their language (e.g., the Hebrew phoneme b)\(^{32-34}\), but also to nonnative consonants (e.g., th, a phoneme that does not occur in Hebrew, and its place of articulation feature—the wide value of the tongue-tip-constriction-area feature—is likewise non-native). For example, Hebrew speakers should consider *thithuk* (an illicit AAB form with the nonnative reduplicant *th*) as worse-formed than *kithuth* (a licit ABB form). In accord with this prediction, Hebrew speakers consider novel AAB stems less acceptable than ABB stems, and they systematically extend this generalization to reduplicant phonemes that are nonnative to the language (shown in (d) \(^{12}\)). Likewise, because ill-formed stems are less wordlike, AAB nonwords are more readily classified as nonwords (in lexical decision) even when they include nonnative phonemes (e.g., *thithuk*, shown in (d), data from \(^{12}\)). Error bars are 95% confidence intervals for the difference between the means.
This inventory of common phonological primitives is combined according to grammatical phonological constraints that are shared across languages38. Since these constraints are conflicting and violable, and their relative priorities vary, languages differ on the range of structures they allow (e.g., \textit{iba} is allowed in Russian, not English). Nonetheless, grammatical constraints are putatively universal: they are active in the grammars of all speakers, irrespective of whether the relevant structures are present or absent in their language.

The universality of linguistic knowledge, in general, and phonological constraints, in particular, has been the subject of much recent controversy55. Moreover, universality is not in of itself evidence for specialized core knowledge. Some phonological preferences could be broadly shared because they are guided by generic computational and perceptual principles56. The metrical preferences governing the grouping of syllables into prominence patterns are a case in point. While the strong-weak metrical pattern (e.g., \textit{baby}) is favored to the weak-strong pattern (e.g., \textit{begin}) 57, and its extraction is preferentially tuned to specific acoustic cues (pitch and intensity) in both adults and infants 58,61, similar preferences obtain in the grouping of nonlinguistic musical tones 58,62 and visual shapes 63. Accordingly, these preferences are likely to reflect principles that are neither algebraic nor specific to phonology.

A stronger case of core phonological principles is presented by the restrictions on syllable structure. Consider, for example, the restrictions on onset clusters (e.g., \textit{block}). Across languages, syllables such as \textit{bla} are preferred (e.g., more frequent) relative to \textit{bna}, which in turn are preferred to \textit{bda}; least preferred is \textit{lda} 64. These observations are captured by putatively universal constraints known as sonority restrictions65,66 (see Box 2). Unlike metrical prominence, sonority restrictions have no obvious nonlinguistic analog. And while they are functionally motivated (i.e., they optimize speech production and perception)22,23, sonority restrictions can be formally captured by principles that are algebraic and abstract65,66. If such restrictions are effectively active in all grammars, then all speakers should converge on the same preferences (e.g., \textit{bla}\textgreater\textit{bna}\textgreater\textit{bda}\textgreater\textit{lda}) even if these onsets are unattested in their language.

Experimental results from English64,67-70 Spanish71, French72 and Korean73 support this proposal. The evidence comes from perceptual illusions. Syllables with ill-formed onsets (e.g., \textit{iba}) tend to be systematically misidentified (e.g., as \textit{leba})—the worse formed the syllable, the more likely the misidentification. Thus, misidentification is most likely in \textit{iba} followed by \textit{bda}, and is least likely in \textit{bna}. Crucially, the sensitivity to syllable structure obtains even when such onsets are unattested in participants’ languages, and it is evident in adults 64,67-70,73 and young children74.

Misidentification, of course, could also occur for numerous reasons unrelated to phonology. But auxiliary analyses demonstrate that misidnetification is not due to artifacts of the auditory stimuli (Russian speakers—whose language allows those onsets—can identify the same stimuli accurately64,67 or to an inability to encode their phonetic form (English speakers misidentify even printed onsets67,69). Likewise, the superior identification of better-formed onsets (e.g., \textit{bn}) does not result from analogy to attested onsets (e.g., \textit{bna} resembles \textit{bla}), as similar results obtain in Korean73—a language that arguably lacks onset clusters altogether.

Computational simulations using state-of-the-art inductive learners demonstrate that, absent innate sonority biases, these restrictions are unlearnable75. Together, these results suggest that these illusions do not result from sensorimotor pressures or inductive learning. By elimination, then, these findings implicate a grammatical phonological process that recodes ill-formed syllables as better-formed ones. Crucially, these syllable-structure restrictions are broadly shared across languages.
Box 2. Phonological universals in speakers’ brains

Across languages, certain onset clusters (e.g., bl) are preferred (e.g., more frequent) relative to others (e.g., lb). Languages that tolerate the infrequent lb clusters tend to allow the frequent bl, whereas the reverse does not follow (see (a)). Accordingly, the infrequent lb implies more frequent clusters (e.g., lb→bd→bn→bl), and this contingency is statistically reliable 64. Linguistic theory 38 suggests that these facts might reflect a universal phonological constraint. Languages differ on the strength (i.e., ranking) of this constraint, and consequently, their cluster inventories vary (e.g., lba is allowed in Russian, not English). But the relevant constraint is active in all grammars (Universal Grammar). The specific explanation is illustrated in (b).

The scale on the left arrays consonants according to their sonority—a phonological property that correlates with loudness65, 66. Obstruents (i.e., consonants that obstruct the airflow) are least sonorous (and phonetically, softest), followed by nasals, liquids and glides, and vowels—the most sonorous on the scale. Using this scale, one can next calculate the sonority profiles of different consonants by subtracting the sonority of the second consonant from the first. This calculation captures well the preference for onsets across languages—the larger the sonority cline (ΔS=S2-S1), the better-formed (hence, more preferred) the onset.

To determine whether these grammatical preferences are active in the brains of individual speakers, one can next gauge the identification of these onsets by speakers of various languages. Results (c, from 64,71,73) show that, as sonority cline (ΔS) decreases, performance reliably deteriorates, and these findings obtain in both syllable count (e.g., does lbif include one syllable or two?) and identity judgment (e.g., is lbif=lebif). Remarkably, the sensitivity to onset structure (gauged by the discrimination of monosyllables from matched disyllables, e.g., blif vs. belif) emerges despite minimal or no experience with onset clusters. Specifically, English 64 Spanish 71 and French72 speakers are sensitive to the bna>bda>lba ranking despite the fact that these onsets are all unattested in their languages. In fact, sensitivity to the onset hierarchy is seen even among speakers of Korean73—a language that arguably lacks onset clusters of any kind. The misidentification of ill-formed onsets is also due to an auditory failure because similar findings obtain with printed stimuli69 (e.g., is lbif=LEBIF; see (d, from 69)). Together, these results suggest a broad tacit constraint that bans onsets with small sonority distances.

Note: Error bars are 95% confidence intervals for differences between means. Syl=syllable-count; ID=identity-judgment.
3.2 Spontaneous regenesis: Evidence from signed phonologies

The possibility that phonological systems comprise shared principles does not mean that their design is experience-independent. Indeed, absent experience with speech, Deaf individuals acquire sign languages whose structure is quite different from spoken languages. Nonetheless, all languages—signed and spoken—exhibit a phonological system inasmuch as (a) they all construct (meaningful) words from patterns of meaningless elements and (b) the resulting systems share representational primitives and constraints. Like spoken languages, signed languages encode phonological features, they represent syllables (a representational primitive) and constrain their profile: syllables require a single peak of phonetic energy—either a vowel (a peak of acoustic energy in speech) or a path movement (a peak of visual energy in sign)—and this restriction is enforced by signers and nonsigners alike.

Figure 2. Syllables play a role in spoken and signed languages (a-b). For example, the English *cans* comprises a single syllable, but two morphemes (*can+s*), whereas *candy* comprises a single morpheme, but two syllables (a). Indeed, syllables and morphemes are defined by distinct linguistic principles. A syllable requires a single peak of sonority (typically, a vowel—the most sonorous element on the sonority scale, see Box 2), but sonority is not relevant for the definition of morphemes. Dissociations between syllables and morphemes are also found in sign languages (b). The American Sign Language (ASL) signs for “Marry” and “Mind freeze” are monosyllabic because they each include a single sonority peak, expressed as a single path movement. Note, however, that “Marry” includes a single morpheme whereas “Mind freeze” (a compound) includes two units of meaning (the morphemes for “mind” and “freeze”). Likewise, the ASL signs for “Appointment” and “Oversleep” are both disyllabic (they each include two movements) despite their different morphological structure (“Appointment” is monomorphemic, “Oversleep” has two morphemes (sleep+sunrise)). Such observations suggest that the syllable is an amodal phonological primitive, distinct from the morpheme.

Crucially, sign languages complete with phonological rules have been shown to emerge spontaneously in Deaf communities that lack experience with sign languages—the Al-Sayyid Bedouin Sign Language (ASBL) is one case in point. However, phonology does not emerge instantaneously, as the first generation of ASBL signers lacked a phonological system. But within three generations, signers produced arbitrary signs that respect putatively universal phonological constraints, including sonority restrictions. The absence of phonology in the early generations shows that phonological organization is neither physically necessary nor experience-independent. Nonetheless, phonological patterns emerge spontaneously in human communities. Spontaneous regenesis is a property shared by human phonological systems and
birdsong. In both cases, isolated individuals exhibit an abnormal “phonological” system81. Given the necessary triggers, however, both birds 81 and men15 eventually converge on patterns that are typical of their conspecifics, but absent in their own experience.

3.3 Ontogeny, Phylogeny, and Technology

While all spoken languages exhibit aural phonological patterns, vocal patterns of communication are by no means unique to humans. One thus wonders whether phonology has homologies or homoplasies in nonhuman communication. To allow us to detect such similarities and control for superficial physiological differences, here, we focus on broad features of phonological design. Earlier, I suggested that algebraic optimization defines human phonology. We thus proceed to ask whether it is also found in the learned vocal patterns of nonhumans.

As it turns out, neither of the two masters of the phonological mind—the algebraic or the phonetic—is uniquely human. There is ample evidence that productive algebraic rules are learnable by several species—both in natural communication of non-ape species 40, 42 and lab settings 41, 43, 82, 83. Nonhuman vocal learners are likewise known to adapt their vocal patterns to phonetic patterns 84. But while these two ingredients—the algebraic and phonetic—are not uniquely human, their conjunctive fusion (i.e., algebraic optimization) has not been shown in other species (see Box 3). To the extent this plausibly presents evidence of absence, not mere absence of evidence (a question awaiting future research), the lacuna would indicate that algebraic optimization does not spontaneously emerge from its ingredients. Such a result would suggest that this capacity might be the product of a human adaptation to form phonological patterns.

Box 3. Algebraic optimization across species

Syllable-like units are also identified in the communication of nonhuman species, most notably songbirds (see (b)). As in the human case, “syllables” in birdsong comprise smaller meaningless elements (notes). Moreover, syllable structure is constrained by powerful algebraic rules. Swamp sparrows’ syllables, for example, naturally follow a learned rule that varies across bird communities40: syllables of New York birds adhere to the I_VI pattern (where I and VI are individual notes, and “_” is a variable standing for “any other note”), whereas Minnesota birds exhibit the opposite VI_I ordering.

While the capacity to restrict syllable structure by learned algebraic rules is not uniquely human, human and bird rules exhibit subtle differences in design. Humans use algebraic phonological rules to attain phonetic goals, a property called algebraic optimization. For example, the CV rule (see (a)), syllables comprise of “any consonant” followed by “any vowel”) optimizes coarticulation and perception. In contrast, the open-ended class invoked in the Swamp sparrow’s song (“_” standing for “any note”) has no obvious phonetic function. Whether the capacity for algebraic optimization is shared by other species remains unknown. Note, however, that no ape species relies on productive algebraic rules in their natural communication4, so even if algebraic optimization is shared, this is likely to reflect an homoplasy, rather than homology.
And indeed, precursors of the phonological mind are detected already in early development. Young infants and neonates are capable of learning phonological rules37; they are sensitive to various phonological primitives (features, syllables, consonants vs. vowels18,51,52,85) and restrict their co-occurrence in line with putatively universal phonological restrictions14.

But as in other systems of core knowledge, core phonological knowledge defines not only our early linguistic instincts but also offers scaffolds for cultural inventions later in life. The intimate link between phonology and reading is a case in point. Unlike phonology, reading is neither instinctive nor early, and its acquisition typically requires considerable effort. But all known writing systems—both conventional systems86 and those spontaneously invented by children87,88—encode phonological units (e.g., features, segments, consonants, syllables). Moreover, skilled readers automatically decode phonological structure from print even when they read silently89,90.

Further clues into the design of the phonological mind are offered by dyslexia. In view of the close links between the phonological system and reading, one might expect individuals with dyslexia to exhibit deficits to linguistic phonological competence. But the actual state of affairs is more nuanced. While dyslexics do in fact show numerous auditory and phonetic deficits91-93 along with difficulties to gain conscious awareness of phonological structure in spoken language94, their grammatical phonological competence is apparently intact72,95,96. The preservation of the phonological grammar in dyslexia demonstrates its resistance to perturbations affecting the auditory/phonetic interface, and underscores their separability. The resilience of the phonological grammar is in line with its view as an innate core biological system.

4. Conclusions

The universality of phonology, its reliance on algebraic rules that are shared across languages and functionally grounded, its early onset, and its role in reading are consistent with the view of phonology as an algebraic system of core knowledge. Whether certain phonological rules are, indeed, universal or innate remains an open empirical question (see Box 4). Rather than offering a definite answer, my goal here is to raise this possibility, draw attention to relevant findings, and outline their broad implications for areas ranging from psycholinguistics and reading research to neuroscience, language evolution and comparative animal studies. I hope this discussion promotes closer scrutiny of the phonological mind.

Acknowledgements

This research was supported by grant NIDCD DC003277. The images embedded in Figure 1 (1, 3-5, 7) and Figure 4a are courtesy of the following artists at FreeDigitalPhotos.net: smarnad (Blocks); Dan (flags); Tom Curtis (Elephant); Photokanok (Ape); James Barker (bird); Daniel St.Pierre(violin); and David Castillo Dominici (infant). The crowd image (Figure 1 (2)) is courtesy of Brenton Nichollsat (www.sxc.hu/profile/BIN). I am grateful for their permission to reproduce this material. I also thank Alex Catullo for technical assistance.
Box 4. Questions for future research

- **Algebraic mechanisms.** The case-study from Hebrew demonstrates that some phonological rules have the capacity to extend generalizations across the board, and linguistic analysis suggests that identity restrictions are quite common in phonology. However, we do not currently know whether across-the-board generalizations are found in all phonological systems, spoken and signed—further research is necessary to address this question.

- **Universal constraints.** While much linguistic and experimental research suggests that certain phonological primitives and constraints are shared across many languages, it is currently unknown whether some languages might fail to exhibit this design. A resolution of this controversy requires concerted effort in both formal linguistics and experimental phonology.

- **The role of triggers.** The expression of innate biological traits is known to critically depend on environmental triggers. Input modality (i.e., speech vs. sign) is likely to present one such trigger in the emergence of phonological systems. How such triggers shape phonological design, whether variation in triggers can explain some of the differences across modalities (i.e., between spoken and signed languages) and within modalities (e.g., between phonological systems that vary on their phonetic properties), remains unknown. A resolution of this issue is likely to illuminate both basic research questions (e.g., do languages share universal grammatical properties) and applied clinical ones (e.g., can deficits to the processing of phonetic triggers lead to language-related disorders, ranging from Specific Language Impairment to Autism and Dyslexia).

- **Development (early and late).** The view of phonology as a biological system of core knowledge raises the question of how this system unfolds in development. While there is some evidence that precursors of phonological primitives and constraints might be present early in life, it is unknown whether those mechanisms are identical to the ones active in adult grammar. We also know little about the mechanisms supporting the transition from the early, instinctive core knowledge of phonology to its use in reading and writing, and why this transition is seamless and spontaneous in some individuals but extremely difficult in others (e.g., among dyslexic individuals).

- **Mind, brain, evolution.** The exponential growth in neuroimaging has resulted in many studies examining the brain networks involved in phonetic categorization (e.g., the distinction between *ba* and *pa*) and the phonotactic patterns specific of different languages (e.g., the distinction between French and Japanese speakers in processing *ebzo*—a sequence allowed in French, but not in Japanese). However, we know practically nothing about how the brain represents phonological primitives and constraints that are putatively universal, and what genes are expressed in those regions. Another acute gap concerns the precursors of the human phonological mind in other species—both within and outside the ape family. These questions underscore the need for an integrative cross-disciplinary approach to the study of the phonological mind.
Glossary

Algebraic optimization. The capacity to optimize functional pressures (e.g., phonetic restrictions) by relying on algebraic rules (e.g., algebraic phonological rules).

Algebraic rules. Mental operations that can extend regularities across the board, to any member of a class—actual or potential. These generalizations are supported by various representational capacities, including the capacity (a) to form equivalence classes; (b) to operate on entire classes using variables; and (c) to distinguish types (Noun) from individual tokens (dog)29.

Coarticulation. The overlap (partial or full) in the production of distinct sounds (e.g., consonants and vowels) during speech production.

Core knowledge. Knowledge of innate, universal principles that determine an individual’s understanding of the world in early development and shapes the acquisition of mature knowledge systems later in development.

Equivalence class. A class of elements whose members (actual or potential) are all treated alike with respect to a given generalization. For example, the CV syllable rule (a syllable comprised of “any consonant” followed by “any vowel”) treats “all consonants” alike—it applies to either familiar English consonants (e.g., \textit{b}) or novel ones that are nonnative to English (e.g., \textit{ch} in \textit{Chanukah}).

Homology. A common trait that emerges in distinct species through descent from a common ancestor.

Homoplasy. A common trait that independently emerged in distinct species (i.e., it is not a homology).

Metrical phonology. People’s knowledge concerning the relative prominence of phonological units. Such knowledge, for example, allows people to identify the prominence contrast between the disyllabic units (feet) in \textit{baby} (where the initial syllable has greater prominence) and \textit{begin} (with a prominent final syllable).

Morphemes. Linguistic units that convey the word’s meaning or function. For example, the word \textit{liked} comprises two morphemes—the base \textit{like} and the ending \textit{d}, indicating a past tense.

Phonetics. The system that implements algebraic phonological patterns as concrete, analog sensorimotor programs—either acoustic and oral (in spoken languages) or visual and gestural (in sign languages).

Phonological patterns. A pattern of meaningless linguistic elements.

Phonology. People’s knowledge concerning the patterning of meaningless linguistic elements in their language—either signed or spoken.

Productivity. The capacity to extend linguistic regularities to novel instances.

Onset. The consonant(s) that occur at the beginning of a syllable (e.g., \textit{bl} in \textit{block}).

Ranking (of constraints). Modern linguistic theory38 asserts that all languages share the same universal set of grammatical constraints, but differ with respect to their relative weight (ranking). For example, the fact that syllables like \textit{lba} are allowed in Russian, but not English, is captured by the ranking of two constraints. One constraint bans sonority falls (for simplicity, \textit{No-lba}) whereas another constraint favors faithfulness to such inputs (i.e., for simplicity, \textit{Faith-lba}). English ranks the ban on \textit{lba} above the faithfulness to the input, and consequently, syllables are unattested; Russian exhibits the opposite ranking, and consequently, such syllables exist in this language. This example illustrates how a theory of universal grammar can potentially capture both the similarity across languages and their variability.
Sonority. An abstract phonological property of segments that correlates with their loudness. Louder segments (e.g., vowels) are generally more sonorous than softer ones (e.g., stop consonants, such as b,p). Note, however, that sonority is defined by the phonological structure of a segment (i.e., its feature composition), rather than its loudness per se. Accordingly, vowels remain more sonorous than stops even if they are both presented in print.

Stem. A word base, used in the formation of complex words. For example, dogs is a complex word, formed by adding the plural morpheme s to the stem dog.

Syllable. A meaningless phonological unit that minimally includes a sonority peak (typically, a vowel, e.g., bee) and optionally, lower-sonority margins (typically, consonants, e.g., bar).

Syntax. People’s knowledge regarding sentence structure.
References

vowels and consonants in speech processing and language acquisition. *Lingue e Linguaggio* 2, 223-229

49. Erickson, J.E., et al. (2010) Sensing the coherence of biology in contrast to psychology: young children’s use of causal relations to distinguish two foundational domains. *Child Dev.* 81, 390-409
61. de la Mora, D.M., et al. (2013) Do humans and nonhuman animals share the grouping principles of the iambic, trochaic law? Attention, Perception, & Psychophysics 75, 92-100